Low Power Hybrid PRAM/DRAM Main Memory

Sungjoo Yoo

Department of Electrical Engineering
Pohang University of Science and Technology
(POSTECH)

sungjoo.yoo@postech.ac.kr

Agenda

- Our problem
 - DRAM refresh energy issue
- Related work
- · Proposed idea
 - In hybrid PRAM/DRAM main memory subsystem,
 DRAM decay with runtime adaptive time out control
- Experiments
- Summary

Our Problem

- DRAM suffers from large refresh energy consumption
- DRAM refresh can consume more than half of DRAM energy in hybrid PRAM/DRAM-based main memory

(1Gb, DDR2-800, Tensilica LX2, 16KB I/D, 258KB L2 cache)

Pohang University of Science and Technology (POSTECH)

3

Related Work: Low Power Main Memory

- Dynamic power management utilizing low power modes
 - Active/standby power down [Micron Technology, Inc.]
 - Power-aware memory access scheduling to achieve longer idle period [I.Hur, HPCA08]
 - Memory controller predicts idle periods in main memory [V.Delaluz, HPCA01] [X.Fan, ISLPED01]
- DRAM refresh power reduction
 - Minimizing the number of rows to be refreshed [M.ghosh, MICRO07] [C.Wilkerson, ISCA10]
 - Maximizing refresh period (e.g., 128ms or 256ms)
 [J.Kim, VLSI03] [R.K.Venkatesan, HPCA06]
 [T.Hamamoto, '98] [Y.Idei, '98]
- Non-volatile memory together with DRAM
 - DRAM + NAND Flash memory, e.g., Pico-server [T. Kgil, JETC08]
 - DRAM + Phase-change RAM (PRAM) [M. Qureshi, ISCA09]
 - Our proposal in this work

Hybrid PRAM/DRAM-based Main Memory

- PRAM: large background main memory
 - Low standby energy
- DRAM: last-level cache with decay
 - Enables lower latency access than PRAM

Pohang University of Science and Technology (POSTECH)

5

Hybrid PRAM/DRAM-based Main Memory

- In case of long idle time
 - All data move from DRAM to PRAM
 - DRAM is turned off
 - Standby energy, e.g., DRAM refresh is avoided

Pohang University of Science and Technology (POSTECH)

6

Our Contribution

DRAM refresh reduction during runtime

- Turn off a part of DRAM by evicting cold data from DRAM to PRAM
- DRAM is still functional providing hot data

Pohang University of Science and Technology (POSTECH)

7

Time Out-based Hot/Cold Management

- On each reference, the counter (per DRAM row) is set to a time out (TO) value
- Periodically, the counter decrements
- · If a counter becomes zero, the row is cold and evicted

Pohang University of Science and Technology (POSTECH)

8

Runtime-Adaptive Time Out Control

TO vs Energy

- TO increase → DRAM energy ↑, PRAM energy ↓
- We can find ${\rm TO_{best}}$ which gives the minimum total energy, ${\rm E_{min}}$

Runtime-Adaptive Time Out Control

TO vs Performance overhead

– Given performance bound, OV_{max} , we need to find the time out, TO_{best_ov} for minimum energy, E_{min_ov}

10

Sampling-based Time Out Control

- Time out is adjusted to dynamically changing behavior
- Check group (without DRAM decay)
 - Gives baseline performance
 - If the main group gives performance violation, then TO is increased
- Alternative groups (TO+1 and TO-1 groups)
 - Provide the energy gain of alternatives → periodical comparison of energy consumption, and select the best TO for the next period DRAM

Pohang University of Science and Technology (POSTECH)

11

Target Architecture

- Cycle-accurate SystemC models
 - L2 cache and hybrid main memory

Component	Details
CPU core	Tensilica LX2 (7 stage pipeline), 32b address, 64b data, 4-way 16KB I/D, 400MHz
L2 cache	16-way 256KB, I/D shared, 64B cache line, 400MHz, 5 pipe stage (input buffering, tag retrieval, tag match, data access, and output)
Memory controller	FR-FCFS policy, closed scheme
DRAM	1Gb, 32b DDR2-800, $t_{CL}/t_{RP}/t_{RCD} = 12.5 \text{ns}/12.5 \text{ns}/12.5 \text{ns}$
PRAM	1Gb, $t_{CL}/t_{RP}/t_{RCD} = 12.5$ ns/160ns/55ns, Row buffer size = 64B

Benchmarks from SPEC2000 and SPEC 2006

Experimental Results: Static TO

- Trade-off between energy and performance overhead
- 23.5% ~ 94.7% reduction in the energy consumption

Pohang University of Science and Technology (POSTECH)

13

Sampling-based Time Out Control

- TO_{best_ov} is tracked during runtime under performance bound (5% in memory access latency)
- Fast tracking of program phase change

Pohang University of Science and Technology (POSTECH)

Experimental Results

 Runtime adaptive TO gives comparable results to static TO which requires design-time optimization

Pohang University of Science and Technology (POSTECH)

15

Summary

- Problem
 - Refresh energy in DRAM occupies a significant portion of total energy consumption in main memory
- Our idea
 - In hybrid PRAM/DRAM main memory subsystem
 - DRAM decay based on hot/cold management
 - Runtime-adaptive time out control to obtain the minimum energy consumption
- Result
 - Reduction in energy consumption of main memory by 23.5%~94.7%