

- SoC Specification
- CPU core Hardening
- Memory Interface Design
- Co-Simulation

SoC Specification

- CPU core Hardening
- Memory Interface Design
- Co-Simulation

Specification- CPU

CortexA9 MP core

- » 2 GHz Dual Core
- »» 32KB/32KB I/D Cache
- » CoreSight

L2 Cache controller Features

- » Prime cell PL310 with 256KB SRAM
- » Configurations:
 - Cache way size: 32KB
 - Number of cache ways: 8 ways

Specification- GPU

Mali400 Features

- 4 pixel processors (up to 1000MP/s)
- » Power management Unit
- » 32 KB L2 cache
- » 128 bits Data Bus width
- » Compatible with
 - OpenGL-ES2.0
 - OpenGL-ES1.1
 - OpenVG 1.1

Specification- DDR2/DDR3

Memory Interface

- » Support DDR2 and DDR3 SDRAM
- » DDR2 operation speed is up to 1066Mbps
- » DDR3 operation speed is up to 2133Mbps
- » Memory data width: 32 bit

Display Interface

Display Frame Buffer

- » Support image format, YCbCr 422
- Support image format, RGB 1/2/4/8/16/24 bpp (bit per pixel)
- ∞ Built-in YUV to RGB color space converter
- » Support single panel mono/color STN display with 4/8-bit interface

- » Support color TFT display with 12/18/24-bit interface
- » Resolution programmable up to 1920 x 1080
- » 256 entry, 24 bit user-defined palette table
- » Dither algorithm to enhance color resolution
- » Programmable polarity for panel control signals

Peripherals

USB OTG Features

» Compliant with the On-The-Go Supplement to the USB2.0 specification Revision 1.0a

UART Features

» Function compatible to the standard 16550 UART interface

Digital Audio Interface (DAI) Features

- » Support multiple digital audio interfaces formats
 - Support I2S, MSB extended, Left-justified, Right-justified data format

Copyright © 2011 All rights reserved

- Software programmable word length, support 1 to 24 valid bits/word
- Software programmable word ignored bits, support 0~31 bits
- Support 1~24 bits/word packet mode
- » Support for Direct Memory Access (DMA)

Ethernet 10/100Mbps MAC

- » Compliant with IEEE 802.3 standard
- » Full/Half Duplex capability
- » Support IEEE 802.1Q VLAN mode

Other features

- Build-in 256KB internal SRAM for programmer usage
- Support LCD touch panel
- Build-in Flash memory interface for system boot up
- Build-in GPIO, Timer, WDT and DMA basic peripherals

- SoC Specification
- CPU core Hardening
- Memory Interface Design
- Co-Simulation

Copyright © 2011 All rights reserved

Your Best SOC Design Foundry

EDA tool

- EDA tools used for Hardening
 - » Frontend
 - Synopsys DCG
 - Create close correlation with ICC to further enhance timing
 - » Backend
 - Synopsys ICC
 - Rubix for CTS and post-CTS optimization
 - » Sign-off
 - Synopsys PT

Block diagram of falcon_cpu

Top level critical paths analysis

Critical path analysis

- CPU level boundary not well optimized. (Timing budgeting)
- CPU clock latency prediction is not accurate.
- Optimization limitation (can't optimize the cells within CPU level during Top optimization)

Improve Top level timing

Improve Top level timing

- » Optimize timing budgeting between SCU and Falcon
- » Predict precise clock tree latency in Falcon
- » Place SCU related FF in the Falcon boundary
- » SCU should be faster than Falcon
- » The critical path should be in Falcon
- » The CA9 MP timing should be limited by Falcon speed

Falcon level critical paths analysis

• **TOP 5K critical paths in falcon_cpu**

- 1. dside module
- 2. core/NEON module
- 3. core other modules
- 4. cpu_ram
 - Timing estimated at cworst WCL corner

Critical path analysis

- » Critical path is R2R path, not memory related paths
- » The most critical paths are located at dside module

Improve Falcon and boundary timing

Copyright © 2011 All rights reserved

Improve Falcon timing

- Create correlation between DC and ICC
- » Analyze the critical-path groups seen in ICC
- » Fine tune constraint to further enhance critical paths in DC
- Generate qualified netlist with better timing and correlation with encounter

Improve boundary timing

- To make high-speed I/O ports ease for chip integration and will not degrade the CA9 speed
- » Do CTS for high-fanout and full-speed input ports
- » Carefully place related FF for full-speed I/O ports
- Carefully arrange the port location for high speed I/O ports

- SoC Specification
- CPU core Hardening
- Memory Interface Design
- Co-Simulation

High Speed PHY Macro Timing Budget

System designer need to break timing budget into individual parts DDBPHY

REF clock	1250			
	unit: ps	jitter/skew	setup time (ps)	hold time (ps)
Transmitter Components	DFF	skew	5	5
	BUFFER	skew	2	2
	MUX	skew	2	2
	local clock tree	skew	5	5
	local clock tree	jitter	5	5
	dll	jitter	50	50
	DQ IO duty	skew	5	5
	DQ IO C2C	jitter	20	20
	SSO push out	jitter	50	20
Total transmitter uncertainty			144	114
Inter-connection	PCB cross talk		10	10
	ISI		5	5
	Package and substrate	skew	8	8
	PCB	skew	10	10
Receiver components (DRAM)	tDS/tDH (1600mpbs) base AC150		10	45
	tDS/tDH (1600mpbs) delta		75	50
	tDS/tDH (1600mpbs) total		85	95
	Total Worst Case Jitter + Skews		406	356
	Data UI		625	
	Margin Under Absolute WC		-93.5	-43.5
創意電子	Margin Under typical case		121.0017	126.7633
GLOBAL UNICHIP CORP.	Margin Under guard banded	Yo	UT DES 13.75084	41.63165
GUC Confidential & Proprietary	Copyright © 2011 All rights reserved			

High Speed PHY Macro

PHY Macro Components

- » IO (so called SSTL-15)
- ∞ PLL/DLL(source synchronous DQS/DQ)
- » Logic (Ser/De-Ser, DFT...)
- » PVT (calibration)

High Speed PHY Macro

- To accommodate low cost and provide high performance DDR IP, per-bit de-skewing technology need to be used to eliminate the following skew and limit the total skew to 30ps
 - » Internal Clock Skew
 - Internal Circuit Routing Skew
 - » Package Skew
 - » PCB Skew

DDR3 Interface Functional Highlight(1)

- Self calibration
 - Through a ZQ pin to calibrate the accurate ODT (on die terminator) and OCD (off chip driver)
- In DDR2, most of DDR chip use trimming to adjust OCD value

DDR3 Interface Functional Highlight(2)

Dynamic ODT (On Die Terminator)

- » ODT advantage
 - Dynamically turn on and off parallel terminator
 - Save power
 - Extra components cause leakage
 - Save cost
 - No extra components

» ODT can change value on the fly without idle time in DDR3

- It is applied in 2 DIMM module system
 - For the non-active device during write, with low-impedance terminator value
 - For the active device during write, with high-impedance terminator value

DDR3 Interface Functional Highlight(3)

DDR3 Interface Functional Highlight(4)

Master Reset

- » Improve system stability
- » Reduce controller burden to ensure no illegal command

Agenda

- SoC Specification
- CPU core Hardening
- Memory Interface Design
- Co-Simulation

Power Integrity Analysis

PI (power integrity)

- Decoupling capacitor adding could lower the impedance in PI simulation
 - Decoupling capacitor need to be put as close to circuit as possible
 - On package decap
 - Capacitance size larger but with substrate inductance from die
 - On die decap
 - Capacitance size smaller but with very small inductance
- » How to optimize the usage of two kinds of decap
 - With flexible decap added on DDRPHY IP could optimize the package design flow in adding decap

Signal Integrity Analysis

• Eye Diagram

- The final sign-off of the DDRPHY system will be eye-diagram, which contains the following information
 - SSO
 - Cross-talk
 - ISI
 - IO duty
 - reflection

Signal Integrity Analysis

Iteration

- » Model correctness will decide the accuracy of simulation result
 - PCB
 - Package
 - = IO
- Iteration on the correlation of simulation result and measurement takes a long cycle and timing consuming

Achieve 2133Mbps

DDR3 maximum speed is 2133Mbps

- UI = 468.8ps compared with UI =625ps when operating in 1600mbps.
 Difference = 156.2ps
- There is no design margin in such high speed operation
- How to "squeeze" the source synchronous system for the extra shrinking 156ps from 1600Mbps data eye, that is a big challenge

Achieve 2133Mbps

DDR3 2133Mbps

From the data eye simulation of 1600Mbps, the setup time + hold time = 418ps, which means the following items take UI(625ps) -418ps-25ps (dqs skew + jitter) = 182ps

- sso
- Cross-talk
- ISI
- IO duty
- reflection
- DDRPHY designer need to squeeze 100ps from 182ps and another 50ps from the other skew and jitter inside the PHY

Achieve 2133Mbps

DDR3 2133Mbps

- » Every components in the system need to be designed very carefully
 - PCB
 - Package
 - IO
 - Impedance matching
 - Clock skew
 - PLL/DLL jitter

