

Godson-T A High-Efficient Many-Core Architecture for Parallel Program Executions

Dongrui Fan Advanced Micro-System Group Institute of Computing Technology Chinese Academy of Sciences

Outline

- Motivation
- Godson-T Architecture and Evaluation
 - Godson-T architecture overview
 - Software runtime system
 - Architectural supports for multithreading
 - Experimental results analysis and evaluation
- Godson-T Design and Implementation
- Conclusions and Future Work

What will be the Next Moore's Law?

- Moore's Law is still in effect
- Processor microarchitecture does not scale well
 - Frequency scaling ends
 - Aggressive ILP exploitation becomes inefficient
 - Power dissipation meets limitation
- → Parallel Microprocessor

MPSoC2011 Microprocessor Architecture Revolution

Memory wall + Power wall + ILP wall = Brick wall !
 What parallel architecture will be successful?

• Parallel architectures (TLP) come to rescue, superscalar processor is being replaced by on-chip multi-core / many-core processor

AMS

2011-7-4

8 four-issue 64-bit core
2*256-bit Vector Ext. per core
1.0GHz@65nm
128GFLOPS@40W
2 DDR3, 2 HT Controllers
Taped out 2010.5

Comparison among State-of-art Processors

Processors	Freq.	Proc	Core	Die Size(mm2)	Power	Double	Energy
	(GIIZ)	C 55(II	1 u III	5126(111112)			
		m)				(GFLOPS)	(GFLOPS/W)
Intel Core i7 980 XE	3.2	32	6	240	130	107.55	0.827
Intel Sandy Bridge	3~4	28	8	370	130	256	1.96
AMD Opteron X12	2.4	45	12	346	130	152	1.16
IBM Power7	3~4.14	45	8	567	100	264.96	2.64
IBM PowerXCELL	3.2	45	9	221	80	100	1.25
Fujstu SPARC fxVIII	2.2	42	8	513	50	128	2.56
Godson-3B	1.0	65	8	300	40	128	3.2

MPSoC2011

Many-Core Challenges: The 5 P's

- Power efficiency challenge
 - Performance per watt is the new metric Dark Silicon will appear in 2020 when facing 11nm process technology
- Performance challenge
 - How to scale from 1 to 1000 cores the number of cores is the new Megahertz
- Programming challenge
 - How to provide a converged many core solution in a standard programming environment
- Parallelism challenge
 - How to exploit parallelism through software and hardware codesign
- Platform challenge
 - How to maximize the usability, such as, machine, runtime system (OS), compiler & library, and debug mechanism

What we could help.....

Productivity Side:

- Most sequential programmers are not ready to switch into parallel programming
 - conservative programming model and make incremental improvement?
- Unique programming model cannot solve all problems efficiently;
 - support multiple programming features efficiently?
- Locks are messy
 - new way to eliminate deadlock?

.....

Performance Side: Take this carefully, because it may affect productivity !

- On-chip synchronization is fast;
 - handle all synchronizations on-chip?
- Flops are cheap, memory communications are expensive;
 - trade flops for communication latency?
- Fine-grained parallelism should be taken into consideration;
 - enable data-driven thread execution on chip?

.

Outline

- Motivation
- Godson-T Architecture and Evaluation
 - Godson-T architecture overview
 - Software runtime system
 - Architectural supports for multithreading
 - Experimental results analysis and evaluation
- Godson-T Design and Implementation
- Conclusions and Future Work

AMS

Overview of Godson-T Architecture

2011-7-4

Processing Core

- ISA: MIPS (user), SIMD-ext., sync-ext.
- 8-stage pipeline
- Dual-issue per thread
- Fast level-1 memory
- 16KB private memory
 - Automatically mapped into stack address space
 - Full/empty bit tagged on each 64-bit slot enables efficient producer-consumer style synchronization
- Communication with external modulesthrough message packets

Interconnection

- Separated routers with each processing core
 - Static XY wormhole routing
 - Round-Robin arbitration
 - Two independent physical networks
 - Duplex 128bit link for each network
- Guaranteed in-order point-to-point communication
 - Deadlock-free & livelock-free
 - Scalable and power-efficient for MESH topology
 - Low latency core-to-core communication
 - Separated networks allowing traffic segregation and tolerating burst DMA transfer

Memory Hierarchy

Each processing core with 32 fixedpoint and 32 floating-point registers

32KB local memory, including L1\$D, SPM

16 address-interleaved L2 cache banks, 128KB each

4 DDR3-1600 memory controllers

Outline

- Motivation
- Godson-T Architecture and Evaluation
 - Godson-T architecture overview
 - Software runtime system
 - Architectural supports for multithreading
 - Experimental results analysis and evaluation
- Godson-T Design and Implementation
- Conclusions and Future Work

GodRunner: Software Runtime System

Outline

- Motivation
- Godson-T Architecture and Evaluation
 - Godson-T architecture overview
 - Software runtime system
 - Architectural supports for multithreading
 - Experimental results analysis and evaluation
- Godson-T Design and Implementation
- Conclusions and Future Work

Architectural Supports for Multithreading

- Thread Communication
 - Cache Coherence Protocol
 - Orchestrating Data Movement
- Thread Synchronization
 - Synchronization Without Memory
 - Full/Empty Bit Synchronization

AMS

Lock-Based Cache Coherent Protocol

Lazy cache coherent protocol

- Pure mutual-exclusion synchronization instruction without memory accesses;
- Eliminate busy-waiting for locks;
- More scalable than bus-snoopy and directory-based cache protocol;
- Enable hardware deadlock detecting.

Pthread-like Thread Execution Using Private Memory

- Support master-slave style thread execution;
- Programming easily: C programming model + Pthread API;
- Compatible with large amount of conventional codes on shared memory system.

Data Transfer Agent (DTA)

(b) 2D strided DTA operations

Programmable asynchronous data transfer agent

- Support vertical and horizontal
 DTA operations (such as prefetch)
- Data transfers between multidimension addresses (such as matrix inversion)
- Network load perception, automatically flow control (improve bandwidth-efficiency)
- Support fine-grain synchronous operations

Synchronized DTA Operations

Outline

- Motivation
- Godson-T Architecture and Evaluation
 - Godson-T architecture overview
 - Software runtime system
 - Architectural supports for multithreading
 - Experimental results analysis and evaluation
- Godson-T Design and Implementation
- Conclusions and Future Work

AMS

Evaluating the Scalability of Performance

Speedup of the bioinformatics and SPLASH-2 benchmarks on Godson-T

Evaluating Synchronization without Memory

Evaluating Full-empty Bit Synchronization

Outline

- Motivation
- Godson-T Architecture and Evaluation
 - Godson-T architecture overview
 - Software runtime system
 - Architectural supports for multithreading
 - Experimental results analysis and evaluation
- Godson-T Design and Implementation
- Conclusions and Future Work

Godson-T Design and Implementation

Top1 Supercomputer in Asia Top2 Supercomputer in the World

Dawning Nebulae A Supercomputer of Superior Flexibility and Capability

Unmatched flexibility and capability along with easy integration into your existing data center infrastructure: Dawning Nebulae supercomputers are designed to meet your most demanding business requirements. Its power can be easily harnessed into hundreds or thousands of nodes and systems for large-scale applications and deployments in HPC, Grid Computing and Web Infrastructure, such as governments, education, finance, telecommunications, Internet, biology, meteorology, petroleum, material sciences, aerospace, and various other industries. The remarkable achievement of Dawning Nebulae represents the highest level of China's HPC technologies and innovations.

未来, 乙酮 知道

A Parallel 4096 Cores Cluster Simulator

MPSoC2011 Monitor/Analysis/Evaluation/ Platform

GVE Software Stack

MPSoC2011 GT-Monitor

Watch GT Running Status

GT-Gcc Compiler for Godson-T

GT-Debugger Troubleshooting tools

GT-Loader Load Runtime/Program

> Runtime Schedule Tasks on Cores

Linux Driver

For PCI-E Communication

Godson-T Many-Core Prototype

- 64 light-weight processing mini cores currently
- 16-core sample:130nm, 230mm²
- Target to domain-specific parallel acceleration
- Data Transfer Agent (DTA)
- Share scattered L2 Cache
- High Speed on-Chip interconnect
- 2 FMAC in One Core

10 Core Core Core Core 12 Core Core Core Core 12 12 Core Core Core Core Core 12 Core Core Core Core Core 12 Core Core Core Core Core 13 Core Core Core Core Core 14 Core Core Core Core Core	MUU CORE CORE CORE CORE CORE CORE CORE 12 12 CAGHI CORE CORE		Contraction of the second seco	
Chip On Mind Concept RTL	Chip on EDA PHY Design	Chip on Silicon Wafer	Chip in Package Package	Chip on Board System

Outline

- Motivation
- Godson-T Architecture and Evaluation
 - Godson-T architecture overview
 - Software runtime system
 - Architectural supports for multithreading
 - Experimental results analysis and evaluation
- Godson-T Design and Implementation
- Conclusions and Future Work

Conclusions of Godson-T

- Scalable solution to achieve performance without losing programmability
 - Support hybrid programming models efficiently
- Built a reasonable many-core architecture framework for further study and research
 - Efficient runtime system
 - Cache coherence protocol
 - Asynchronous data transfer agents and hardware-supported synchronization mechanisms
 - Pthreads-like programming model, and versatile parallel libraries
- Efficient architecture exploiting abundant DLP/TLP in applications

Future Work

Thousand Threads Running on Chip

4 1GHz heavy cores process 8 threads in Ts'

16 1GHz light cores process 16 threads in Ts'

16 1GHz SMT light cores process 4X16 threads in Ts'

16 1GHz SMT light cores with redundancy reducing process 6X16 threads in Ts'

16 1GHz SMT light cores with statement and redundancy reducing process 8X16 threads in Ts'

MPSoC2011

Thanks & QA

2011-7-4

