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# Embedded cores in SoCs doubles every ~2 years
Total SoC area very stable across tech nodes
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Core’s Law: Zillion Core Chip list
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Platform 2012 Multicore Fabric

Platform 2012 Programming Environment
Programming models
Programming tools

Case Studies, Lessons Learned

High-Quality Rescaling application
Mapped to S/W dominated platform
Mapped to H/W dominated platform
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From CISP to RISP st Ay/
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Platform 2012 Overview st Kys
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Platform 2012 Multicore Fabric

Platform 2012 Programming Environment
Programming models
Platform mapping tools

Case Studies, Lessons Learned

Video High-Quality Rescaling
Mapped to S/W platform
Mapped to H/W-S/W platform
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Programming models ~~list

Each group has favorite one!
Set-top box, modem: Synchr. dataflow w. simple control
Mobile multimedia: Dynamic Task Dispatch (DTD), OpenCL
Video algorithm developers: CUDA/OpenCL

ST R&D organizations:
Components/patterns, GCD subset, Streamit, UML...

Management: “OpenAnything”
Sum of all forces - favor PPMs that are

Industry ‘standards’ - OpenCL
C-based dialects

3|

Those of the customer © - Predicated Exec. Data Flow
Exploiting platform efficiently - Native Prog. Models
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P2012 Software Development Kit “list
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Parallel Programming Models =i Y/
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Codec, 1Ql,
Augm. reality, Sensor fusion .
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Parallel Programming Pattern (PPP) lib
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Platform 2012 Multicore Fabric

Platform 2012 Programming Environment
Programming models
Programming tools

Case Studies, Lessons Learned
VC1 video decoder example
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Platform 2012 Multicore Fabric

Platform 2012 Programming Environment
Programming models
Platform mapping tools

Programming model-aware debug and
visualization

Case Studies, Lessons Learned

Video High-Quality Rescaling
Mapped to S/W-dominated platform
Mapped to H/W-dominated platform
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HQR (High-Quality Rescaling)
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HD 1080p, 60 fps

SDF model variant

One “token” on infout per link per filter firing
Or simple static multi-rate

Tokens typically a line of pixel data

Multiple modes (on frame-by-frame basis)

Some dynamic control flow, exceptions
E.g. dynamic bypass of a filter, frame edges
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Two Mapping Approaches o 1171

Map to S/W-based platform

Data-level parallelism
Structured programming patterns

Multi-processor & SIMD

All tasks for a given data
element assigned to single PE

Map to H/\W-dominated

platform

Task-level parallelism

Dataflow programming model
Software-based control

Tasks assigned to a single
H/W Processing Unit

DLP inside each H/W PU
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S/W Mapping: HQR example gt Ky7

Data-level
parallelism
Each image line split
into stripes

Each PE runs all
filters for a stripe

SIMD optimization of
each filter
Parallel Progr.
Patterns

Data iterator split
and join patterns

Synchronization
between PEs using L . = ;

“exchanger” pattern ~ Y _ Y —
(fOl' border pixels) tripe Width =W Pixels Accessed =W + 2 + 2

Input Image

r

Task1 Task?2 Task3 Task4
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S/W Mapping: HQR example

Data-level
parallelism
Each image line split
into stripes

Each PE runs all
filters for a stripe

SIMD optimization of
each filter
Parallel Progr.
Patterns

Data iterator split
and join patterns

Synchronization
between PEs using
“exchanger” pattern
(for border pixels)
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HQR Optimization Process @Jﬁﬁ Kys

# PEs 697 Reference code: frame-based
4 (no vectorization)

—_—

Line-based

(vectorization unoptimized)
/

Line/column switch before

last filter (simplifies processing)

o

Line/column switch before last
filter (vectorization optimized)

/

Use new specialized
SIMD instructions

26

16 1
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HQR Macro trace analysis

Exploring Queue Iterator Depths
[U, Y, V] Splitters : 2 tokens, Joiners: 8 tokens
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[U, Y,V S I|tter 3 tokens Joiners: 16 tokens - _13% speedup
PE1 i -“ 1 b i w[m
PE2 oo f! m}m
PE3 m}m
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Prog. Tools: HQR Mapping Results st Ly/

Vectorization results (16 way VECx EFU):
Results for standalone CA-ISS
Average vector unit utilization 79%

Parallel processing results (1 vs. 4 PEs)

Single CPU ‘ 4 CPU ‘ 4 CPU ‘ 4CPU ‘

| Initial | Burst communication | Buffer dimensionning |

19179956

2X 3.3X 3.9 X

9406673

5731049 Results on
. e cycle-approx
— !_ TLM platform
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P2012 Group
We reduced cost of S/W by over 50X
This is great!

Customer
You increased cost over H/W by over 5X
This is a disaster!

Hard lesson
Customer is always right - especially when it is true ...

Conclusion
Mixed HW/SW platforms for low-cost consumer
Pure SW platforms for mass market

\'i A 1
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Task-level parallelism
Assignment of each filter to a H/'W PU
Grouping of highly communicating PUs to a single PE
In contrast with S/W mapping, where
Data-level parallelism exploited (Multi-PE and SIMD)
Each PE performs all tasks

\'l NEIE th
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PEDF Dataflow Programming Model it
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Predicated Execution Data Flow

Host Communication

\ 1 N\
TR

~

Mode Controller

AN

R

RN
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Host Communication

/ Component

Gets host request params.
Frame data
Required processing type
Processing parameters
Mode Controller

Configures control
parameters, steps pipeline

Filters
Actual data computation
Fixed or variable data rate
Auto-gen. lteration Controller
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PEDF Progr. Model (contd.) st &y7
Multiple module support

As a mapping unit: graphs can be mapped on multiple clusters, or
multiple Control PEs of the same cluster.

As an execution unit: provide a natural split of the applications'
execution controller, which can be distributed onto multiple clusters.

Variable-rate support
Filters produces and consumes data on as-needed basis

PEDF Application _____ Fixed
rate

_______ Variable
rate

Cluster #1 Cluster #2
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Mapping to HW/SW Platform ]

Functional MODEL
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Platform

Mode Ctl Iteration Ctl

Connectivity “Glue”

|
|
|
|
|
Mode Controller : ﬁ
[ Y
_— _ - |
=JFiltero Filter 1| — |Filter 2 === |Filter N
A _F » -~ _| B ~ : ﬁ |II ﬁ ﬁ
1 I I L /)
Iteration Controller , .
I Fa |Fi| [Fd [Fm |[FA [Fr| [FS |Fz

Application capture using PEDF prog. model
Functional validation using Apex (on host)
Automatic control code generation on platform
Performance analysis

\'l NEIE O
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Management vision
Single programming model for
mapping to either H/'W or S/W Processing Units
Reality
Single programming model
For reference algorithm mostly
For H/'W-dominated platform with simple S/W filters
Decomposition into H/W and S/W-dominated parts

Refinement of H/W

Mostly task-level parallelism

Refinement of S/W

Mostly data-level parallelism

3|
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Threads
& DLP

|
Top-level !
Dynamic Dataflow pipeline |
Interchangeable |
implementations of HQR |
|

1

ThreadDLP & @ “““
PEDF TLP = _
Other stages of pipeline { Dynamic Data fT}i ------- T
Can use any of the most ! |
appropriate prog. models: | I TMNR HQR Out | !
I E H I

PEDF, PPP, DTD ...

Components act as
semantic-neutral
structuring mechanism
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Need to support multiple programming models
PEDF streaming model for H/W dominated platforms

Predictable data communication (fixed or variable rate)
Simple, well-structured control

Highest performance, lowest cost

Flexibility in scheduling/control of H/W PEs

Native Progr. Models for S/W dominated platforms
Components for high-level dataflow
Abstract, close to reference algorithm
Mapping control, predictable performance
Support for platform scaling
Effective exploitation of data level parallelism
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Optimization process is multi-dimensional, multi-level

Use of DLP and TLP

High-level bandwidth analysis

Algorithmic transformations, Vectorization
Contention & buffer analysis & optimization

Need to support range of HW/SW platform variants
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Mass-market ASSP Consumer SoC

Full S/W platform Mix of H/W and S/W
Homogeneous Customized
processors processors
Time-to-market Low-cost

Tuned flexibility
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Bottom Line

Multi-Processor SoC

Smart Peoplé :

Programming Models:
0% - Higher productivity

- Increased platform
independence

- Multiple objectives

- No single silver bullet




