st L7

Exploring H/'W and S/W solutions to
MP-SoC platform mapping:
An Industrial Perspective

Pierre Paulin
Director, SoC Platform Automation
STMicroelectronics (Canada) Inc.

Multi-Processor System-on-Chip Symposium
7 July 2011, Beaune, France

Cejlgﬁ
Core’s Law (for Embedded SoCs) “list AYS

256

128
\\ 222
64

X

P}

32 -

X
16 ¢ U@
core
X: Data points

ores per Chip

C

8 X
Y Multi- \ in ST
Dual- X core
core _/ Source:
2 7 Sample

(o)
S & 8 ® 2 N I © ST consumer
AN AN AN AN AN N N N

Embedded cores in SoCs doubles every ~2 years
Total SoC area very stable across tech nodes

- : eotets
Core’s Law: Zillion Core Chip list

LI]
B

3|

256 k- H |K H k-

128 \Lorrama

64 -

32 @ /\ risc |Fosp
Multi- (Bus J|_ Bus |
core) | o
_ —~N

QEmporium /O] Mem[HW

2016

—leti
Outline CElyist Kyf

Platform 2012 Multicore Fabric

Platform 2012 Programming Environment
Programming models
Programming tools

Case Studies, Lessons Learned

High-Quality Rescaling application
Mapped to S/W dominated platform
Mapped to H/W dominated platform

_leti

From CISP to RISP st Ay/
X] [X]
rRisc |U"Dpsp Controller HWS, DMA
MCU Bus
e |) n: n:
I/OMem| H/W
@ @
‘CISP’ ‘RISP’
(Complex Integrated (Regular Integrated

System Platform) Sytem Platform)

_leti

Platform 2012 Overview st Kys
O 1-32 clusters
:‘:":lft':(')';g ﬁ_‘l‘;‘"‘r" \ 1-16 cores/cluster
Audio N video |J ~25 GOPs to
—— several TOPS
Prog. Model Perf. Optional H/W PEs
Feedback
[X]]
Efrev| Blw] A-LIC
Clust E
Ctrl
Async NoC X X

et
Outline CEyist Kyf

Platform 2012 Multicore Fabric

Platform 2012 Programming Environment
Programming models
Platform mapping tools

Case Studies, Lessons Learned

Video High-Quality Rescaling
Mapped to S/W platform
Mapped to H/W-S/W platform

= leti
Programming models ~~list

Each group has favorite one!
Set-top box, modem: Synchr. dataflow w. simple control
Mobile multimedia: Dynamic Task Dispatch (DTD), OpenCL
Video algorithm developers: CUDA/OpenCL

ST R&D organizations:
Components/patterns, GCD subset, Streamit, UML...

Management: “OpenAnything”
Sum of all forces - favor PPMs that are

Industry ‘standards’ - OpenCL
C-based dialects

3|

Those of the customer © - Predicated Exec. Data Flow
Exploiting platform efficiently - Native Prog. Models

Lleti ﬁ

P2012 Software Development Kit “list

Programming Models

Standard Streaming Native
OpenCL PEDF m=x) Components /
(Pred.Exec. Data Flow) | | Dyn. Task Dispatch
~

[iliw, ¢

4 ==

N
KLanguage-ﬂ

Programming EnVironment e

Component-based il SN
based based vomo | I :>
F2 RSP o = i i
F1 { } FAF5| || 7 EEE 0 B el e —
E3 z IR E——— :
VAN | /) _*+u.s*”) | Debug, Analysis, Viz
Y,

Component-Based |: |
Dynamic Deployment || 9°° i PowerManagement |

Platforms | Functional z& mC”TLM ﬁm XXL Emulator

Execution Engines

Parallel Programming Models =i Y/

P}

Codec, 1Ql,
Augm. reality, Sensor fusion .

Application |F1| — 2§ —|F3

) = \ — —— = \\
(~ | Execution \ ommunlo\atlonl\ {" Memory)
' model ‘| ['synchronization ||\ access

y
Run-to- Dyn.Task Queue

Abstraction

Async
\ Prefetch l

Parallel Programming Pattern (PPP) lib

Native Programming Layer (NPL) HAL

o __\
10

et
Outline CEyist Kyf

Platform 2012 Multicore Fabric

Platform 2012 Programming Environment
Programming models
Programming tools

Case Studies, Lessons Learned
VC1 video decoder example

11

—leti
Application-to-Platform Mapping @l?ﬂl Kys

Deploy

I/O

Fbric | | [
= < I < [ST s [

X Fabric Async NoC

Native Programming Tools Flow

Application
Capture e "
DTD » (DTD
~
4 : D
Mapping Tools
-
4 Component-based API-
. Comm | [|hased
Communication gen”. lib
Execution engine config".
Trace synthesis, debug info generatlon
L AN J

st &7

> Functional
tL simulation

Runtime

Deployment

ﬁ Execution
Engines
QoS,

Power mgqr.
N =l

Performance y / P2012 Platform .
Analysi — racgs -
mays = L1 C
oo L ALLAS S0 CcC I: C

M M =
e ||[LDVMA]I E]]
m||[Hws] |m <F

<

Vlsuallzatlon/debug

,q”

__Jdeti
Outline st

3|

Platform 2012 Multicore Fabric

Platform 2012 Programming Environment
Programming models
Platform mapping tools

Programming model-aware debug and
visualization

Case Studies, Lessons Learned

Video High-Quality Rescaling
Mapped to S/W-dominated platform
Mapped to H/W-dominated platform

14

HQR (High-Quality Rescaling)

_~leti

P}

CElist AY/

< <

(#): Normalized workload
@ Dynamic control

g

a [Clv,u,v: 9.2)

~ F1 w3 F2
— g (Y:1.2) g : (Y: 0.8)
uv [{U.V: 0.6) M (U.V:0.4)
— —
< <
— I r% "> _I;t;
v |l 00 ol (@8

HD 1080p, 60 fps

SDF model variant

One “token” on infout per link per filter firing
Or simple static multi-rate

Tokens typically a line of pixel data

Multiple modes (on frame-by-frame basis)

Some dynamic control flow, exceptions
E.g. dynamic bypass of a filter, frame edges

15

Two Mapping Approaches o 1171

Map to S/W-based platform

Data-level parallelism
Structured programming patterns

Multi-processor & SIMD

All tasks for a given data
element assigned to single PE

Map to H/\W-dominated

platform

Task-level parallelism

Dataflow programming model
Software-based control

Tasks assigned to a single
H/W Processing Unit

DLP inside each H/W PU

—leti
S/W Mapping: HQR example gt Ky7

Data-level
parallelism
Each image line split
into stripes

Each PE runs all
filters for a stripe

SIMD optimization of
each filter
Parallel Progr.
Patterns

Data iterator split
and join patterns

Synchronization
between PEs using L . = ;

“exchanger” pattern ~ Y _ Y —
(fOl' border pixels) tripe Width =W Pixels Accessed =W + 2 + 2

Input Image

r

Task1 Task?2 Task3 Task4

17

S/W Mapping: HQR example

Data-level
parallelism
Each image line split
into stripes

Each PE runs all
filters for a stripe

SIMD optimization of
each filter
Parallel Progr.
Patterns

Data iterator split
and join patterns

Synchronization
between PEs using
“exchanger” pattern
(for border pixels)

__leti
st

3|

Iterator\Split

Total inter-processor B/W:
Total inter-filter B/W:

Fon 4
JiinZ

—

F1 |i F2

é =
AAAA

F3| |l F4

0.08 GB/s
2.25 GB/s

e

\It,eratgr/Joi,n
VA

exchange

Data \

18

HQR Optimization Process @Jﬁﬁ Kys

PEs 697 Reference code: frame-based
4 (no vectorization)

—_—

Line-based

(vectorization unoptimized)
/

Line/column switch before

last filter (simplifies processing)

o

Line/column switch before last
filter (vectorization optimized)

/

Use new specialized
SIMD instructions

26

16 1

19

HQR Macro trace analysis

Exploring Queue Iterator Depths
[U, Y, V] Splitters : 2 tokens, Joiners: 8 tokens

letl
Iltt

””51

\
[U, Y,V S I|tter 3 tokens Joiners: 16 tokens - _13% speedup
PE1 i -“ 1 b i w[m
PE2 oo f! m}m
PE3 m}m

20


~~~leti
Prog. Tools: HQR Mapping Results st Ly/

Vectorization results (16 way VECx EFU):
Results for standalone CA-ISS
Average vector unit utilization 79%

Parallel processing results (1 vs. 4 PEs)

Single CPU ‘ 4 CPU ‘ 4 CPU ‘ 4CPU ‘

| Initial | Burst communication | Buffer dimensionning |

19179956

2X 3.3X 3.9 X

9406673

5731049 Results on
. e cycle-approx
— !_ TLM platform

21



~~1eti
~ S/W-based solutions et Ky

P2012 Group
We reduced cost of S/W by over 50X
This is great!

Customer
You increased cost over H/W by over 5X
This is a disaster!

Hard lesson
Customer is always right - especially when it is true ...

Conclusion
Mixed HW/SW platforms for low-cost consumer
Pure SW platforms for mass market

\'i A 1

22



————————————————————

N O IS S S S S S S S S S B B D DS S S .

Task-level parallelism
Assignment of each filter to a H/'W PU
Grouping of highly communicating PUs to a single PE
In contrast with S/W mapping, where
Data-level parallelism exploited (Multi-PE and SIMD)
Each PE performs all tasks

\'l NEIE th

23



PEDF Dataflow Programming Model it

_~leti

3|

Predicated Execution Data Flow

Host Communication

\ 1 N\
TR

~

Mode Controller

AN

R

RN

[~

Host Communication

/ Component

Gets host request params.
Frame data
Required processing type
Processing parameters
Mode Controller

Configures control
parameters, steps pipeline

Filters
Actual data computation
Fixed or variable data rate
Auto-gen. lteration Controller

24



_leti
PEDF Progr. Model (contd.) st &y7
Multiple module support

As a mapping unit: graphs can be mapped on multiple clusters, or
multiple Control PEs of the same cluster.

As an execution unit: provide a natural split of the applications'
execution controller, which can be distributed onto multiple clusters.

Variable-rate support
Filters produces and consumes data on as-needed basis

PEDF Application _____ Fixed
rate

_______ Variable
rate

Cluster #1 Cluster #2

25



Lleti
Mapping to HW/SW Platform ]

Functional MODEL

3|

Platform

Mode Ctl Iteration Ctl

Connectivity “Glue”

|
|
|
|
|
Mode Controller : ﬁ
[ Y
_— _ - |
=JFiltero Filter 1| — |Filter 2 === |Filter N
A _F » -~ _| B ~ : ﬁ |II ﬁ ﬁ
1 I I L /)
Iteration Controller , .
I Fa |Fi| [Fd [Fm |[FA [Fr| [FS |Fz

Application capture using PEDF prog. model
Functional validation using Apex (on host)
Automatic control code generation on platform
Performance analysis

\'l NEIE O

26



__leti
~ Single progr. model st

Management vision
Single programming model for
mapping to either H/'W or S/W Processing Units
Reality
Single programming model
For reference algorithm mostly
For H/'W-dominated platform with simple S/W filters
Decomposition into H/W and S/W-dominated parts

Refinement of H/W

Mostly task-level parallelism

Refinement of S/W

Mostly data-level parallelism

3|

27



—leti
Multiple Programming Models st Ky7

Threads
& DLP

|
Top-level !
Dynamic Dataflow pipeline |
Interchangeable |
implementations of HQR |
|

1

ThreadDLP & @ “““
PEDF TLP = _
Other stages of pipeline { Dynamic Data fT}i ------- T
Can use any of the most ! |
appropriate prog. models: | I TMNR HQR Out | !
I E H I

PEDF, PPP, DTD ...

Components act as
semantic-neutral
structuring mechanism




3|

~~~1eti
Final lessons st

Need to support multiple programming models
PEDF streaming model for H/W dominated platforms

Predictable data communication (fixed or variable rate)
Simple, well-structured control

Highest performance, lowest cost

Flexibility in scheduling/control of H/W PEs

Native Progr. Models for S/W dominated platforms
Components for high-level dataflow
Abstract, close to reference algorithm
Mapping control, predictable performance
Support for platform scaling
Effective exploitation of data level parallelism

29

_ leti
Final lessons (contd.) “list

3|

Optimization process is multi-dimensional, multi-level

Use of DLP and TLP

High-level bandwidth analysis

Algorithmic transformations, Vectorization
Contention & buffer analysis & optimization

Need to support range of HW/SW platform variants

] [[
R e

- EEEEE
EE EE EEE &fwio*'“**
= i
X s 1 | |
ox~10x 1.2x~3X 1%

| ——

30

—leti
Platform 2012 Use Cases CEdyirt

3|

Mass-market ASSP Consumer SoC

Full S/W platform Mix of H/W and S/W
Homogeneous Customized
processors processors
Time-to-market Low-cost

Tuned flexibility

X [%¢] X
BE B BB B ——
pure] e FEE ER

E E E E E E i .E
n'2 2
%] [%¢] [%¢]

5x~10x 1.2X~3x 1x

| ——

Bottom Line

Multi-Processor SoC

Smart Peoplé :

Programming Models:
0% - Higher productivity

- Increased platform
independence

- Multiple objectives

- No single silver bullet

