

Exploring H/W and S/W solutions to MP-SoC platform mapping: An Industrial Perspective

Pierre Paulin Director, SoC Platform Automation STMicroelectronics (Canada) Inc.

Multi-Processor System-on-Chip Symposium 7 July 2011, Beaune, France

Core's Law (for Embedded SoCs)

- # Embedded cores in SoCs doubles every ~2 years
- Total SoC area very stable across tech nodes

Core's Law: Zillion Core Chip

Outline

- Platform 2012 Multicore Fabric
- Platform 2012 Programming Environment
 - Programming models
 - Programming tools
- Case Studies, Lessons Learned
 - High-Quality Rescaling application
 - Mapped to S/W dominated platform
 - Mapped to H/W dominated platform

+ P12-leaks

From CISP to RISP

'CISP'

(Complex Integrated System Platform)

'RISP'

(Regular Integrated Sytem Platform)

Platform 2012 Overview

Outline

- Platform 2012 Multicore Fabric
- Platform 2012 Programming Environment
 - Programming models
 - Platform mapping tools
- Case Studies, Lessons Learned
 - Video High-Quality Rescaling
 - Mapped to S/W platform
 - Mapped to H/W-S/W platform

P12-Leaks

Programming models

- Each group has favorite one!
 - Set-top box, modem: Synchr. dataflow w. simple control
 - Mobile multimedia: Dynamic Task Dispatch (DTD), OpenCL
 - Video algorithm developers: CUDA/OpenCL
 - ST R&D organizations:
 Components/patterns, GCD subset, Streamit, UML...
 - Management: "OpenAnything"
- Sum of all forces → favor PPMs that are
 - Industry 'standards'

→ OpenCL

- C-based dialects
- Those of the customer ②

- → Predicated Exec. Data Flow
- Exploiting platform efficiently
- → Native Prog. Models

P2012 Software Development Kit

<u>Standard</u> <u>S</u>

OpenCL

PEDF (Pred.Exec. Data Flow)

Native

Components

Dyn. Task Dispatch

Programming Environment

Languagebased

C APIbased

System Infrastructure & Runtime

Component-Based Dynamic Deployment

QoS

Power Management

Execution Engines

Platforms

Functional

XXL Emulator

Parallel Programming Models

Outline

- Platform 2012 Multicore Fabric
- Platform 2012 Programming Environment
 - Programming models
 - Programming tools
- Case Studies, Lessons Learned
 - VC1 video decoder example

Application-to-Platform Mapping

Native Programming Tools Flow

Outline

- Platform 2012 Multicore Fabric
- Platform 2012 Programming Environment
 - Programming models
 - Platform mapping tools
 - Programming model-aware debug and visualization
- Case Studies, Lessons Learned
 - Video High-Quality Rescaling
 - Mapped to S/W-dominated platform
 - Mapped to H/W-dominated platform

HQR (High-Quality Rescaling)

- HD 1080p, 60 fps
- SDF model variant
 - One "token" on in/out per link per filter firing
 - Or simple static multi-rate
 - Tokens typically a line of pixel data
 - Multiple modes (on frame-by-frame basis)
 - Some dynamic control flow, exceptions
 - E.g. dynamic bypass of a filter, frame edges

Two Mapping Approaches

- Map to S/W-based platform
 - Data-level parallelism
 - Structured programming patterns
 - Multi-processor & SIMD
 - All tasks for a given data element assigned to single PE
- Map to H/W-dominated platform
 - Task-level parallelism
 - Dataflow programming model
 - Software-based control
 - Tasks assigned to a single H/W Processing Unit
 - DLP inside each H/W PU

S/W Mapping: HQR example

- Data-level parallelism
 - Each image line split into stripes
 - Each PE runs all filters for a stripe
 - SIMD optimization of each filter
- Parallel Progr. Patterns
 - Data iterator split and join patterns
 - Synchronization between PEs using "exchanger" pattern (for border pixels)

S/W Mapping: HQR example

- Data-level parallelism
 - Each image line split into stripes
 - Each PE runs all filters for a stripe
 - SIMD optimization of each filter
- Parallel Progr. Patterns
 - Data iterator split and join patterns
 - Synchronization between PEs using "exchanger" pattern (for border pixels)

HQR Optimization Process

HQR Macro trace analysis Exploring Queue Iterator Depths

Prog. Tools: HQR Mapping Results

- Vectorization results (16 way VECx EFU):
 - Results for standalone CA-ISS
 - Average vector unit utilization 79%
- Parallel processing results (1 vs. 4 PEs)

Single CPU	4 CPU Initial	4 CPU Burst communication	4 CPU Buffer dimensionning	
19179956	2 X	3.3 X	3.9 X	
	9406673	5731049	4811882	Results on cycle-approx TLM platform

S/W-based solutions

- P2012 Group
 - We reduced cost of S/W by over 50X
 - This is great!
- Customer
 - You increased cost over H/W by over 5X
 - This is a disaster!
- Hard lesson
 - Customer is always right especially when it is true ...
- Conclusion
 - Mixed HW/SW platforms for low-cost consumer
 - Pure SW platforms for mass market

H/W Mapping: HQR Example

- Assignment of each filter to a H/W PU
- Grouping of highly communicating PUs to a single PE
- In contrast with S/W mapping, where
 - Data-level parallelism exploited (Multi-PE and SIMD)
 - Each PE performs all tasks

PEDF Dataflow Programming Model

Predicated Execution Data Flow

PEDF Progr. Model (contd.)

- Multiple module support
 - As a mapping unit: graphs can be mapped on multiple clusters, or multiple Control PEs of the same cluster.
 - As an execution unit: provide a natural split of the applications' execution controller, which can be distributed onto multiple clusters.
- Variable-rate support
 - Filters produces and consumes data on as-needed basis

Mapping to HW/SW Platform

- Application capture using PEDF prog. model
- Functional validation using Apex (on host)
- Automatic control code generation on platform
- Performance analysis

Single progr. model

- Management vision
 - Single programming model for mapping to either H/W or S/W Processing Units
- Reality
 - Single programming model
 - For reference algorithm mostly
 - For H/W-dominated platform with simple S/W filters
 - Decomposition into H/W and S/W-dominated parts
 - Refinement of H/W
 - Mostly task-level parallelism
 - Refinement of S/W
 - Mostly data-level parallelism

Multiple Programming Models

- Top-level
 - Dynamic Dataflow pipeline
- Interchangeable implementations of HQR
 - Thread DLP
 - PEDF TLP
- Other stages of pipeline
 - Can use any of the most appropriate prog. models: PEDF, PPP, DTD ...
- Components act as semantic-neutral structuring mechanism

Final lessons

- Need to support multiple programming models
 - PEDF streaming model for H/W dominated platforms
 - Predictable data communication (fixed or variable rate)
 - Simple, well-structured control
 - Highest performance, lowest cost
 - Flexibility in scheduling/control of H/W PEs
 - Native Progr. Models for S/W dominated platforms
 - Components for high-level dataflow
 - Abstract, close to reference algorithm
 - Mapping control, predictable performance
 - Support for platform scaling
 - Effective exploitation of data level parallelism

Final lessons (contd.)

- Optimization process is multi-dimensional, multi-level
 - Use of DLP and TLP
 - High-level bandwidth analysis
 - Algorithmic transformations, Vectorization
 - Contention & buffer analysis & optimization
- Need to support range of HW/SW platform variants

Platform 2012 Use Cases

- Mass-market ASSP
 - Full S/W platform
 - Homogeneous processors
 - Time-to-market

- Consumer SoC
 - Mix of H/W and S/W
 - Customized processors
 - Low-cost
 - Tuned flexibility

1x

Bottom Line

Multi-Processor SoC for Smart People

Programming Models:

- Higher productivity
- Increased platform independence
- Multiple objectives
- No single silver bullet