

Hardware Synchronizer (HWS) Overview

- Shared operator to optimize low-level system primitives
 - Synchronizations (Mutex, Semaphore, Barriers)
 - Signaling between cores
 - Centralized basic monitoring data (defects, power, ...)
- Simple low-cost hardware
 - Based on a set of registers with specific interface guaranteeing Atomic operations even for those having side-effects (e.g. post-inc/-dec)
 - Including HW support to ease system messaging and for automatic notification of events to prevent processor polling
 - Dynamic sorting of processors
 - for improved processor allocation
 - for automatic balancing of system activities when coupled to system messaging module
 - Dynamic task management support thanks to HW/SW virtualization of processors

leti&li/t

Hardware support for online resources management, MPSOC 2011

Minimize runtime SW involvement in handling low level signaling even in the case of dynamic resources management T.T.

- approachesDoes not assume a static assignment of task
 - Synchronization events are link with tasks and task with processor, both association table being dynamically
 - e.g. Barriers operation does not rely on direct signaling between processor cores
- Dynamic allocation can be used to balanced the execution of system activities between all the processor cores.
- Dedicated HW allows to do some efficient message passing between cores with lows SW cost for shared Q management

leti&li/t

ardware support for online resources management, MPSOC 2011

■ Scalable solution with the amount of processor and Atomic Counters ■ HW Complexity mostly coming from Atomic Counters ■ HW Complexity mostly coming from Atomic Counters ■ System Messenger ■ Atomic Counter + PN ■ IT/EVT generator Dynamic Allocation ■ Timers ■ Integrated in Locomotiv Chip designed in 32nm ■ Less than 1% cluster area while supporting complete system software stack ■ 0,06 mm² for a 500MHz operating frequency ■ STM/croelectronics STM/PD Processor STAP/D Processor

Conclusions

- Design of a low cost accelerator for the implementation of runtime software in parallel processors
 - Integration in the P2012 FPGA prototypes and the Locomotiv Chip
- Very low overhead demonstrated through the implementation of VC1 application
 - Content understanding application analysis ongoing
- Support for massively parallel devices ongoing
 - Initial solution based on the cooperation between multiple HWS
 - Extension to support dynamic load balancing between clusters
- Support of heterogeneous resources in progress

leti&li/t

Hardware support for online resources management, MPSOC 2011 | 11

