Multiprocessor Scheduling taking into account Energy Harvesting and Storage

Hsin-Ho Huang & Youn-Long Lin
National Tsing Hua University
Taiwan
ylin@cs.nthu.edu.tw

THEDA. DESIGN.

Outline

- Introduction
- Problem Formulation
- Experimental result
- Conclusion

Time-Constrained Scheduling

- Traditionally, we minimize hardware cost (processor and memory) and energy cost (power consumption rate) assuming a fixed-capacity power supply
- In an environment that relies on harvested energy, the task scheduler should take into account both energy generation, storage and retrieval.

THEDA. DESIGN.

3

Motivational Example(1/3)

• Scheduling Without Battery

		Energy Consumed	Generator Output	Battery				
Step	Schedule			Discharge	Charge	Stor Before	age After	
1	a b	5	5	0	0	0	0	
2	d	5	5	0	0	0	0	
3	c	5	5	0	0	0	0	
4	e	5	5	0	0	0	0	
	Hardware: Core = 2 Generator = 5 Battery = 0							

THEDA. DESIGN.

Motivational Example(2/3)

• Scheduling With Battery

			Energy Consumed	Generator Output	Battery				
3	Step Schedule				Discharge	Charge	Storage		
							Before	After	
	1	a b d	3	4	0	1	0	1	
	2		3	4	0	1	1	2	
	3	C f	5	4	1	0	2	1	
	4	e	5	4	1	0	1	0	
Γ	Hardware Com. 2 Committee 4 Datters 2								

Hardware: Core = 3 Generator = 4 Battery = 2

THEDA. DESIGN.

										—
	Energy	Generator		Battery						
Schedule	Consumed	Output	Discharge	Charge	Stor Before	age After				
b d	3	4	0	1	0	1				
	3	4	< 0	1	1 Step	2	Schedule	Energy Consumed	Generator Output	
c f	5	4	1	0	2		6	5	5	Disch 0
e	5	4	1	0	1 2	а) (d)	5	5	
•	ardware: Core = 1	3 Generator = 4 i	Battery = 2)K		H				
					3	+	c f	5	5	0
					4	*	e	5	5	0
							Н	ardware: Core = 1	2 Generator = 5 E	3attery =
THEDA.	DESIGN Design Automation &	N. IC Design								

Problem Definition

- Input
 - A task graph
 - Performance target (the time-constraint to complete the task)
 - Unit costs of generator, battery and hardware DVFS cores.
 - A library of DVFS cores
- Output
 - A scheduled task graph meeting the time-constraint.
 - A scheduled time and speed mode of each task
 - Number of cores (maximum parallelism over all time)
 - Generator capacity (maximum energy generated over all time)
 - Battery capacity (maximum energy stored over all time)

THEDA. DESIGN.

_

Assumptions

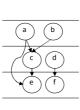
- Homogeneous multicores
- Negligible communication and power-switching overhead
- Four modes for DVFS cores
- SECS SuperESCalar Simulator
- Applications composed of image compression, encryption and channel coding tasks

8

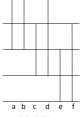
Theda.Design.

Algorithm

- Time-constrained Total-Hardware-Costminimized scheduling
 - As Soon As Possible (ASAP)
 - As Late As Possible (ALAP)
 - Integer Linear Programming (ILP)


THEDA. DESIGN.

9


ASAP & ALAP

 $ASAP(S_i)$

ALAP (L_i)

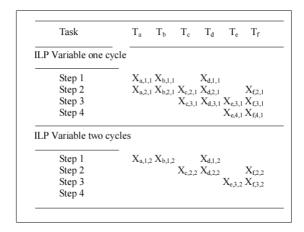
Mobility

THEDA. DESIGN.

Integer Linear Programming (1/6)

- CPLEX ILOG (ILP Tool): mixed integer linear programming [16]
- Parameters
 - Cc, Cg and Cb denote unit cost of core, generator, and battery, respectively.

THEDA, DESIGN.


11

Integer Linear Programming (2/6)

- Variable
 - Num_cores : an integer variable denoting the number of cores needed
 - Generator: an integer variable denoting the maximum output power per clock cycle of the generator
 - Battery: an integer variable denoting the storage capacity of the battery
 - $X_{i,j,k}$ are 0-1 integer variables associated with task T_i . $X_{i,j,k} = 1$ if T_i is scheduled into step j and operated k clock cycles (k = 1 or 2); otherwise, $X_{i,i,k} = 0$

THEDA, DESIGN.

Integer Linear Programming (3/6)

THEDA. DESIGN.

13

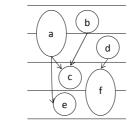
Integer Linear Programming (4/6)

- Minimizing
 - Cc * Num_cores + Cg * Generator + Cb * Battery
- Subject to
 - Power consumption
 - No more than B_{i-1} + Generator
 (Bi means energy stored in the battery prior Step i)

$$\sum_{T_i \in r} [(4*X_{i,j,1} + 1*X_{i,j,2}) + B_i - (B_{i-1} + Generator)] \leq 0$$

- Battery capacity $\sum_{T \in \mathcal{T}} (B_i Battery) \le 0$
- Capacity limit w/r to generator $Battery 2*Generator \le 0$

THEDA. DESIGN.


Integer Linear Programming (5/6)

- Mutually excusive $\sum_{j=Si}^{Li} X_{i,j,1} + \sum_{j=Si}^{Li-1} X_{i,j,2} = 1$ for $1 \le i \le n$
- Total hardware $\sum_{T, \in I} (X_{i,j,1} + X_{i,j,2}) Num_cores \le 0$
- Dependency $X_{i,j,1} + X_{m,n,k} \le 1$ for $S_i \le j \le L_i$, $S_i \le n \le j, 1 \le k \le 2$ $X_{i,j,2} + X_{m,n,k} \le 1 \text{ for } S_i \le j \le L_i, S_i \le n \le (j+1), 1 \le k \le 2$ for all $T_i \to T_m$

THEDA. DESIGN.

15

Integer Linear Programming (6/6)

 $X_{a,1,2}, X_{b,1,1}, X_{c,3,1}, X_{d,2,1}, X_{e,4,1}, X_{f,3,2} = 1$

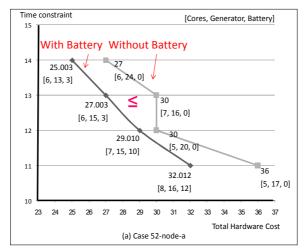
- Cc = 2, Cg = 1, Cb = 0.001
- Num_cores = 2, Generator = 5, Battery = 0

THEDA. DESIGN.

Experiment Setting

- Cost model of generator [20]
 - a 12V and 5W panel costs USD 35.00.
- Cost model of battery [21]
 - NiCd AA Cell 0.6Ah x7.5V x0.0075\$/Wh =0.03375\$

	NiCd AA Cell	Capacity (mAh)	Voltage	Cost per KWh	Energy per cycle(Wh)
_		600	7.5	7.5	0.6*7.5 = 4.5


- Cost function of minimization
 - 2 x Num_cores + generator + 0.001 x battery.

THEDA. DESIGN.

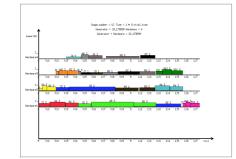
Hsin-Ho Huang

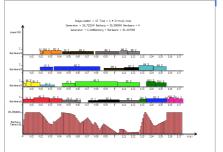
17

Design Space (Artificial Case)

THEDA. DESIGN.

DVFS Parameters Based on SECS Simulation Results

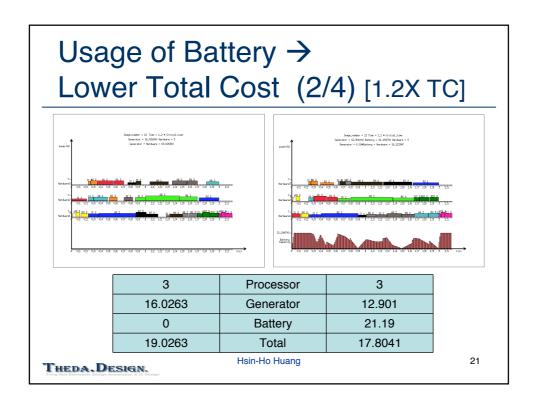

	Type	Size	Voltage/Frequency	Power(W)	Time(s)
	JPEG Source Coding	97.7KB	0.8V/0.711GHz	1.95819	0.32
			0.9V/1.007 GHz	2.64207	0.23
			1.0V/1.313 GHz	3.47367	0.17
			1.1V/1.600 GHz	4.50778	0.14
Image12.bmp	AES Encryption	97.7KB	0.8V/0.711 GHz	2.87483	1.05
640*480			0.9V/1.007 GHz	3.90190	0.74
900KB			1.0V/1.313 GHz	5.14090	0.57
			1.1V/1.600 GHz	6.67996	0.46
	RS Channel Coding	130KB	0.8V/0.711 GHz	2.35421	0.53
			0.9V/1.007 GHz	3.20254	0.38
			1.0V/1.313 GHz	4.23445	0.29
		1.1V/1.600 GHz	5.51935	0.23	

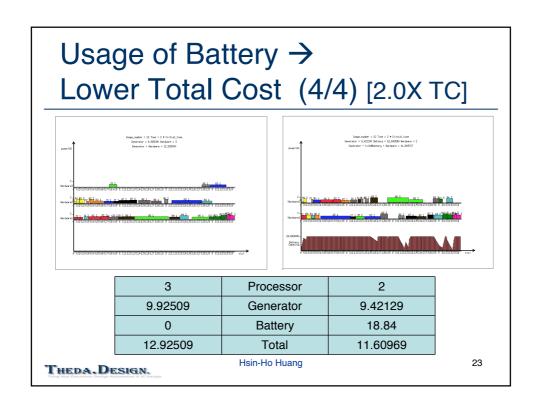

THEDA. DESIGN.

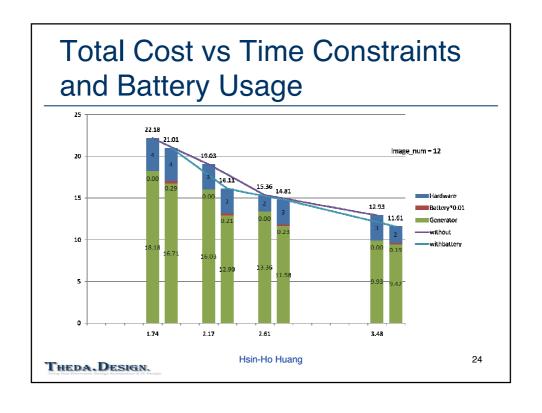
Hsin-Ho Huang

19

Usage of Battery → Lower Total Cost (1/4) [1.0X TC]




4	Processor	4
18.1799	Generator	16.7131
0	Battery	29.39
22.1799	Total	21.1287


THEDA. DESIGN.

Hsin-Ho Huang

Conclusion

- A time-constrained scheduler minimizing total hardware cost including
 - Processor Cores
 - Energy Harvester
 - Energy Storage
- Trade-Off among three types of resources
- Evaluation with data (source coding, cryptography, channel coding) from SESC simulator

THEDA. DESIGN.