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Motivation

O Portable systems execute power hungry applications

O Most functions are implemented by software

O Energy depends on the software running on
processor systems

Software energy analysis is necessary for reducing
the energy consumption of embedded systems




Energy Characterization

 Calculate the energy dissipated for a hardware event using
post-layout simulation of a target processor system

* The hardware events include data read, data write, cache
miss, program branch execution and so on
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Our Approach

 Run a number of training benches on ISS of a target processor
 Run the same benches on a post-layout model of the processor
* Fit a linear model through regression analysis
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Software Energy Analysis

 Alinear expression for the software energy consumption
E, . 0= Zel. N, e :energy of HW event, N,:#HW events
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 The number of the hardware events should be counted by
instruction set simulator (ISS)
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Accuracy Evaluation

Target system

Processor Main Memory
CPU I-CaChe SDRAM
core D-Cache > (Micron’s DDR?2)

— Processors
o M32R-Il, SH3-DSP (Renesus)
o MeP (Toshiba)

— 0.18um CMOS library
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Results for M32R-II & SH3-DSP
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Multi-Performance Processor
Based on MeP (Toshiba)

PEs have the same ISA but differ in their clock speeds and
energy consumptions

Intra MPU core: a single PE core runs alternatively
Inter MPU cores: multiple MPU cores run concurrently

Cache associativity
MPU cores _ value can be
1 8V dsTPr e L1-cache I /\dynamically changed
1.0V ——>| PE core !::::::j «> L2 cache

T. Ishihara, “Real-Time Dynamic Voltage Hopping on MPSoCs,” MPSoC 2009, Savannah.
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Results for MPP
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Applications

» Software Energy Analysis
Help finding energy bottleneck

» Software Energy Optimization
Compiler optimization
OS-based power management
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Software Energy Analysis (1/2)

25
== D-main_mem w D-SPM MPEG2 encoder
>0 = leache = |-S5PM Energy for cache access
| | ™= -main_mem = cache miss is much larger than that
mm CPU core —— Post Layout for cache misses
15 | . |
| - Inst. cache Ofi-chip data
Cache miss

[EEY
o

vrmwn,m MH

Bkl

L 1 A 1 L *

Energy dissipated for 1000 instructions [uJ]

o

_________________________________________________________________ The number of instructions executed

b 12



Software Energy Analysis (2/2)

N
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JPEG encoder

8 1 Cache mis More than 50% is
stack accesses
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Off-chip read
word access
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Software Energy Optimization

Motivation:
Memory consumes a large amount of energy
Memory energy depends on program behavior

Code optimization contributes to the total energy reduction

Processor Chip

Power/ﬂ(\:rjalyhsis of ARM920T . CPU//éPI\//
| On-chop Cache /
memory
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ory memory energy

DRAM Chip




Code and Data Allocation

Off-chip
memory

Memory address space

Scratchpad region

Size | Latency | Energy
SPM Small Small Small
Cache Small Small Large
Off-chip mem. | Huge Huge Huge

Our Compiler Optimization

Cacheable region

Non-cacheable region
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Techniques

-

functions and data objects

~
‘ Find the optimal locations of

In @ memory address space
- Y,

“Application program“

Function A
Function B
Global variable C
Global variable D
Constant data E




Our Approach

Previous work...

Memory area [ Application program |

Find code & data placements which Scratchpad Function A
o m.a>.<irr?ize # SPM accesses regen Function B
* minimize # cachg misses Ci‘;zfl*::'e Global variable C
* minimize # off-chip accesses Global variable D
Do not always minimize the energy Non-rzzcigﬁab'e Constant data E
Our method...

Minimize the total energy Total processor ener

consumption estimated by our P 0 Jy
reduced by 10%

model through an ILP

Y. Ishitobi, T. Ishihara, H. Yasuura, “Code and Data Placement for Embedded Processors with
16  Scratchpad and Cache Memories,” Signal Processing Systems 60(2), pp.211-224, August, 2010



Stack Allocation

- Optimization 1s done at compile time through an ILP
= Find the best locations of stack frames based on profiling
= Store/Load inserted before and after call instructions
- Frames are dynamically moved between SPM and MM

= Stack frame 1s generated in SPM when the function 1s called
= Store frames into MM 1if there 1s no space left in the SPM

Frame 0 Frame 0

Frame 0

Frame 0 Frame 0

SPM

Frame 1a

Frame 1a

Frame 1a

Frame 1 Frame 1

[ Frame 2 [

Store>
Frame 1b Frame 1b

Load>
Frame 1b

-
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Stack Allocation Results

= Circular: Evict oldest frame first if there is no space left in the SPM
« Static: Place frames in the SPM only if SPM does not overflow
« Ours: Placement is optimized by the Integer Linear Programming
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L. Gauthier, T. Ishihara, “Optimal Stack Frame Placement and Transfer for Energy Reduction Targeting Embedded Processors
with Scratch-Pad Memories,” Proc. of IEEE Workshop on Embedded Systems for Real-Time Multimedia, pp.116-125, Oct., 2009.
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Multi-Task System

0 The SPM is shared among tasks

00 Several previous techniques
m (a) Spatial sharing
v No management required
v Very small part of the SPM for each task

m (b) Temporal sharing
v Totally of SPM space to each task
v SPM update at context switches
m (c) Hybrid
v Best of both approaches

v Compile time profile-based assignment to
SPM

(a)

(b)

SPM space
N

—> Time

Time

(€) |

Time

19 H. Takase, H. Tomiyama, and H. Takada. Partitioning and allocation of scratch-pad
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SPM Sharing for Multi-Task

0 At compile time:

= Assign an SPM space (i. e., block) to each task
= Find memory objects to place in each block

= Find an address for each block in SPM for minimizing

overlaps
0 At run time:

= Copy only a part of overlapping with coming task

Inefficient sharing Efficient sharing

1 SPM space (bytes)

-

Bo

1 SPM space (bytes)
N

Bo

o N =01 X
] ]

o N - O01 X

VY
tv "t ' Tasks to | t, | Tasks

20

SPM

/

\

to

t;

t;

t;

¢ b

0

siace
t2 t2

—_—
r

ty

|t |t

tolts

Time



Multi-Task Results

BSpace OTime M®Hybird ®Block

Normalized energy consumption

SPM size in Kb SPM size in Kb SPM size in Kb

21 L. Gauthier, et al. “Minimizing Inter-Task Interferences in Scratch-Pad Memory Usage for Reducing the Energy
Consumption of Multi-Task Systems,” Proc. of CASES, pp.157-164, Oct., 2010.
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Summary

A fast accurate model for SW energy
consumption

The error of our approach is 5% on an
average and 20% at the maximum case

Code and data placement techniques
drastically reduce the SW energy

Future work

Refine stack placement technique and
target heap object (WIP)
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