
Energy Characterization of
Embedded Processors for

Software Energy Optimization

Tohru Ishihara

Kyoto University

1

Lovic Gauthier

Kyushu University

2011/07/05The 11th International Forum
on MPSoC and Multicore

Agenda

2

Introduction
Processor Energy Characterization
Software Energy Optimization

Motivation

3

Portable systems execute power hungry applications
Most functions are implemented by software
Energy depends on the software running on
processor systems

www.princeton.edu/~wolf/

Software energy analysis is necessary for reducing
the energy consumption of embedded systems

Energy Characterization

4

Microprocessors &
Memory subsystems

�• Calculate the energy dissipated for a hardware event using
post-layout simulation of a target processor system

�• The hardware events include data read, data write, cache
miss, program branch execution and so on

Gate-level simulator
HW events Energy
Data read 15 nJ
Cache miss 32 nJ
Branch exec. 58 nJ
�… �…

Energy Lookup Table

D. Lee, T. Ishihara, M. Muroyama, H. Yasuura, F. Fallha, �“An Energy Characterization Frame
work for Software-Based Embedded Systems,�” Proc. of ESTIMedia, pp.59-64, Oct., 2006.

Our Approach

5

�• Run a number of training benches on ISS of a target processor
�• Run the same benches on a post-layout model of the processor
�• Fit a linear model through regression analysis

Gate-level Power Estimation
(e.g. Verilog-XL, PowerCompiler)

ISS (GNU tool)

Post-layout model of CPU

N1: # instruction/data cache misses
N2: # taken branches executed
�… �…

Eestimated (1)= e1·N1(1)+e2·N2(1)+ … +en·Nn(1)

… …

EGL (1)
Eestimated (2)= e1·N1(2)+e2·N2(2)+ … +en·Nn(2)EGL (2)

Eestimated (m)= e1·N1(m)+e2·N2(m)+ … +en·Nn(m)EGL (m)

Training benches

EGL(i): Energy estimated for training bench (i)

Software Energy Analysis

6

Software Simulator
(e.g GNUPro sid)

�• A linear expression for the software energy consumption

�• The number of the hardware events should be counted by
instruction set simulator (ISS)

HW events

Energy of SW

HW events Energy
Data read 15 nJ
Cache miss 32 nJ
Branch exec. 58 nJ
�… �…

Energy Lookup Table

eventsHW # : event,HW ofenergy : iiiiestimated NeNeE

Accuracy Evaluation

7

Target system

�– Processors
M32R-II, SH3-DSP (Renesus)
MeP (Toshiba)

�– 0.18 m CMOS library

I-CacheCPU
core D-Cache

SDRAM
(Micron’s DDR2)

Processor Main Memory

Results for M32R-II & SH3-DSP

㻡㻜

㻝㻜㻜

㻝㻡㻜

㻞㻜㻜

En
er

gy

Co
ns

um
pt

io
n

[
J]

Instruction Frame Number

㻼㼛㼟㼠㻙㼘㼍㼥㼛㼡㼠
㻻㼡㼞㻌㻭㼜㼜㼞㼛㼍㼏㼔 < 1 min.

2.5 hours

Estimation error < 3%

㻣㻜

㻥㻜

㻝㻝㻜

㻝㻟㻜

E
ne

rg
y

C
on

su
m

pt
io

n
[

J]

Instruction Frame Number

㻼㼛㼟㼠㻙㼘㼍㼥㼛㼡㼠
㻻㼡㼞㻌㻭㼜㼜㼞㼛㼍㼏㼔

Estimation error < 3%

Energy estimation for JPEG encoder executed on a SH3-DSP processor

Energy estimation for JPEG encoder executed on a M32R-II processor

8

Multi-Performance Processor

9

L1-cache

PE core

PE core

L2 cache

MPU cores

Based on MeP (Toshiba)
PEs have the same ISA but differ in their clock speeds and
energy consumptions
Intra MPU core: a single PE core runs alternatively
Inter MPU cores: multiple MPU cores run concurrently

Cache associativity
value can be

dynamically changed

T. Ishihara, �“Real-Time Dynamic Voltage Hopping on MPSoCs,�” MPSoC 2009, Savannah.

1.8V

1.0V

0

2000

4000

6000

8000

10000

12000

14000

16000

0

5000

10000

15000

20000

25000

Results for MPP

< 10 sec

9.5 hours
Estimation error = 3.2%

Estimation error = 2.3%

Energy estimation for JPEG encoder run on a MPP with 1.8V 4-w cache

Energy estimation for JPEG encoder run on a MPP with 1.0V 1-w cache

10

Applications

11

Software Energy Analysis
Help finding energy bottleneck

Software Energy Optimization
Compiler optimization
OS-based power management

Software Energy Analysis (1/2)

12

0

5

10

15

20

25
 D-main_mem D-SPM
 I-cache I-SPM
 I-main_mem cache miss
 CPU core Post Layout

En
er

gy
 di

ss
ipa

ted
 fo

r 1
00

0 i
ns

tru
cti

on
s [

J]

㼀㼔㼑㻌㼚㼡㼙㼎㼑㼞㻌㼛㼒㻌㼕㼚㼟㼠㼞㼡㼏㼠㼕㼛㼚㼟㻌㼑㼤㼑㼏㼡㼠㼑㼐

CPU
Inst. cache

access
Cache miss

Off-chip data
access

MPEG2 encoder
Energy for cache access
is much larger than that

for cache misses

0

2

4

6

8

10

12

14

16

18

20

Software Energy Analysis (2/2)

13

En
er

gy
 di

ss
ipa

ted
 fo

r 1
00

0 i
ns

tru
cti

on
s [

J]

㼀㼔㼑㻌㼚㼡㼙㼎㼑㼞㻌㼛㼒㻌㼕㼚㼟㼠㼞㼡㼏㼠㼕㼛㼚㼟㻌㼑㼤㼑㼏㼡㼠㼑㼐CPUInst. cache access

Cache miss

Off-chip read
word access

JPEG encoderMore than 50% is
stack accesses

Software Energy Optimization

14

Memory consumes a large amount of energy
Memory energy depends on program behavior
Code optimization contributes to the total energy reduction

SPMCPU

Cache

Off-chip
memory

43%
10x of on-chip
memory energy

On-chop
memory

Processor Chip

DRAM Chip

Motivation:

Code and Data Allocation

Cacheable region

Scratchpad region

Non-cacheable region

SPMCPU

Cache

Off-chip
memory

Size Latency Energy

SPM Small Small Small

Cache Small Small Large

Off-chip mem. Huge Huge Huge

Application program

Function A
Function B

Global variable C
Global variable D
Constant data E

Find the optimal locations of
functions and data objects

in a memory address space

Our Compiler Optimization
Techniques

15

Memory address space

Our Approach

16
Y. Ishitobi, T. Ishihara, H. Yasuura, “Code and Data Placement for Embedded Processors with
Scratchpad and Cache Memories,” Signal Processing Systems 60(2), pp.211-224, August, 2010

Memory area Application program
Function A
Function B

Global variable C
Global variable D
Constant data E

Find code & data placements which
�• maximize # SPM accesses
�• minimize # cache misses
�• minimize # off-chip accesses
Do not always minimize the energy

Previous work�…

Scratchpad
region

Minimize the total energy
consumption estimated by our

model through an ILP

Our method�…

Cacheable
region

Non-cacheable
region

Total processor energy
reduced by 10%

Stack Allocation

17

SPM

MM

Frame 0

Frame 1

Frame 0

Frame 1a

Frame 1b

Frame 0

Frame 1a

Frame 1b

Frame 2

Store

Frame 0

Frame 1a

Frame 1b
Load

Frame 0

Frame 1

Optimization is done at compile time through an ILP
Find the best locations of stack frames based on profiling
Store/Load inserted before and after call instructions

Frames are dynamically moved between SPM and MM
Stack frame is generated in SPM when the function is called
Store frames into MM if there is no space left in the SPM

Stack Allocation Results

18

Circular: Evict oldest frame first if there is no space left in the SPM
Static: Place frames in the SPM only if SPM does not overflow
Ours: Placement is optimized by the Integer Linear Programming

L. Gauthier, T. Ishihara, �“Optimal Stack Frame Placement and Transfer for Energy Reduction Targeting Embedded Processors
with Scratch-Pad Memories,�” Proc. of IEEE Workshop on Embedded Systems for Real-Time Multimedia, pp.116-125, Oct., 2009.

Multi-Task System

19

The SPM is shared among tasks
Several previous techniques

(a) Spatial sharing
䘠 No management required
䘠 Very small part of the SPM for each task

(b) Temporal sharing
䘠 Totally of SPM space to each task
䘠 SPM update at context switches

(c) Hybrid
䘠 Best of both approaches
䘠 Compile time profile-based assignment to

SPM

SPM space

Time
t3

t2
t1

t0

SPM space

Time

t
3t

2

t
1

t0
t2

t
3

t
1

t
0

(a)

(b)

(c)

SPM space

Time

t
3

t0

t
2

t0 t
1

t3

t2

t1

t
1

t1

t
0

t
3

H. Takase, H. Tomiyama, and H. Takada. Partitioning and allocation of scratch-pad
memory for priority-based preemptive multi-task systems. in DATE ’10

SPM Sharing for Multi-Task

20

At compile time:
Assign an SPM space (i. e., block) to each task
Find memory objects to place in each block
Find an address for each block in SPM for minimizing
overlaps

At run time:
Copy only a part of overlapping with coming task

SPM space

Time

t3

t1

t0

t2

t0 t0

t1

t2

t3

t1

t3
t
0

t1

t3

t1

t0 t1 t2 t3 t2 t1 t0 t3

t1 t1SPM space (bytes)

Taskst0 t1

0

1

0

5
1
2

1
K

SPM space (bytes)

Taskst0 t1

0 1
0

5
1
2

1
K

Efficient sharingInefficient sharing

1 2 4 8 16
0

10

20

30

40

50

60

70

80

SPM size in Kb

No
rm

ali
ze

d e
ne

rg
y c

on
su

mp
tio

n

Set 3 data

Multi-Task Results

21 L. Gauthier, et al. �“Minimizing Inter-Task Interferences in Scratch-Pad Memory Usage for Reducing the Energy
Consumption of Multi-Task Systems,�” Proc. of CASES, pp.157-164, Oct., 2010.

1 2 4 8 16
0

10

20

30

40

50

60

SPM size in Kb

Set 2 data

1 2 4 8 16
0

10
20
30
40
50
60
70
80

SPM size in KbNo
rm

ali
ze

d e
ne

rg
y c

on
su

mp
tio

n Set 0 data

Space Time Hybird Block

1 2 4 8 16
26

28

30

32

34

36

38

SPM size in Kb

Set 1 data

1 2 4 8 16
0

10

20

30

40

50

60

70

80

SPM size in Kb

Set 4 data

1 2 4 8 16
0

10

20

30

40

50

60

70

SPM size in Kb

Set 5 data

22

Refine stack placement technique and
target heap object (WIP)

A fast accurate model for SW energy
consumption
The error of our approach is 5% on an
average and 20% at the maximum case
Code and data placement techniques
drastically reduce the SW energy

Future work

Summary

