Empowered by Innovation N E‘

A Software Development Toolset for
Multi-Core Processors

Yuichi Nakamura
System IP Core Research Labs.
NEC Corp.

Motivations

| Embedded Systems: Performance
enhancement by multi-core
systems

| Multi-core Systems need the
parallelization of software .
Tilera

! How to develop parallelized 256 C eed
software on multi-core » . 4 Poner tc.
® Realistic parallelization 4 of coFes
® Keeping hard real time constraints G 16 \inc°rE§3ing)
g

® Detail verification and debug O 4
* Frequency increasing \ , « o

p——

1 |
1970 1980 1990 2000 2010 2020

Mobile Communication Consumer Car

ores

Challenges:
Enhancement of the productivity of software development for multi-core
systems with high performance and high reliability.

%-___T:_T—_____?;___:_; Empowered by Innovation N Ec

Our Approache

S

From an industry’s view, 3 approaches/tools are proposed

I, Parallelization from modelsg2. liask placementiwithrconstraintsi S:Debugging SYW by using FRGA

Simulink models

Simulink
Simulink

Support parallelization from

-~ Sequen
L cealcC

Model analysis C-code analysis

Flattening, Ioop unrolling

Optlmlzatlon graln control

Code Generation

e Task Parallelization
in short time

omm

Time

Dependenc
Analysis

Hard Deadline
Or|g|naI task set

Task
g PIacement

0.
%

Result |

Co reﬁ:ll_l_l_l | > et T ST

0‘] l_ll'ljl >

Hard deadiile e —

e Task Placement
with hard deadline

Empowered by Innovation N E‘

1-1.Parallel C Code Generation from Simulink Models

| A tool to generate parallel C code from Simulink models o
| The tool enables users to develop parallel software without Simulink

using parallel APIs explicitly. — ﬂ Sequential
imuliin : C code

models —_— -
L&

Parallelization Method:
1. treat each of leaf blocks in models as a task.

2. signal completion of processing of tasks to descendant
tasks with synchronized messages.

Code
analysis

task

communication

Building internal models

Simulink models |

Parallel code generation tool

To extract structural
parallelism expressed in / Optimization
Preliminary experimental result mOdels through remOVing
(audio equalizer, 100% before parallelization) bIOCk hiera rChy and |00p
ZRoEIRe 60% structures. :
4-core PC 38% Code generation
* Number of tasks in To optimize task granularity |/~ d
parallelized software: 57 for small communication Parallelized
B overhead. ¢ Ccode

|2 = —
= _.=—_ Empowered by Innovation NE‘

1-2. How to Introduce Parallelization from Simulink Models

Sound effect process:

Modification of frequency and amplitude.
1024sample/frame/channel

222\
S

———,

ask dependency graph ;

_#oftasks=57 /G w Poeline paralelaato

@Sdund effect
processing model
of blocks = 252

‘*_'_ Empowered by Innovation NI E ‘
L"‘E;. -

1-3. Case Studies Parallelization from Simulink Model

2] linedetectnl

IrfHE RERE FTO Ral-iauE WO v-D ANH

Lane departure warning

[_ O[] EREE
D BRED BT il

DSEE| %R |(E= | r nfun = | BB R E®

[Lane Departure Warning System]

Audio: Sound Effect

A BHE REE®

Line . o scag P Message
E ‘ infont : m L] e Bt
LT [100% | FizedStepDiscrete | hvre s W0 [FosdotpDacre
e)] http://www.mathworks.com/matlabcentral/fileexchange/1
MATLAB :Video and Image processing toolbox : 8317-professional-simulink-audio-equalizer
vipldw_all.mdl
Model # of # of Execution time compared with sequential
blocks tasks implementation
Windows eSOL eT-Kernel
Xeon 4core @1.8GHz | NaviEngine (4core @400MHz)
Audio 252 57 38% 26%
Lane 302 63 35% 39%
éé___E:T_PageG Empowered by Innovation NEC

2-1.Multi-Core Task Mapping for Hard Real-Time Systems

Multi-Core Task Mapping Tool: STF (Smart Task Fitter)
v Generates static mapping of embedded software on multi-core CPUs

v Can generate mapping of hundreds of tasks within few seconds

» Satisfying deadlines, execution order and other real-time restrictions

| UseCase1: Easy migration of multi
task systems from single-core to
multi-core
e STF generates task mapping I — - 'I

| UseCase2: Integration of

discrete systems onto multi-core

. . . Deadlirte Ti
automatically that satisfies execution eadiif Time Core 0 .
order and real-time restrictions. e E———
Deadlin Time Core 1 =
I 1 . _
Deadline _Deadiife Time Deadline
Original Task Set ” DIETBEEIEEY | Integration example:
Analysis . . .
Three discrete real-time systems are integrated

mapping function of STF.

Mapping Algorithm:
1) Task allocation with minimum
response time

Core 1 1= [

onto a dual-core CPU by using automatically

Each task keeps execution order and deadline.

beaaine Twel 2) Reallocation by min-cut based placement

‘""l"lluu.._.

f"

Empowered by Innovation N E‘

2-2. Flow of Task Allocation with Minimum Response Time

Idol time is generated
by dependency

:

Response time
based allocation

@

Idol time reduction

@

Minimize total
response time
of-all tasks

@

Each task can be
terminated in a short
time

i

-

Core #0

Core #1

Core #0

Core #1

Core #0

Core #1

Idol time
A N ?
B C 2D] ¢
—>Time
A D T°E:
B C E_|
> Time
Short period task
A D P°E
B C Efficiency
> Time

Empowered by Innovation N E‘

‘""l"lluu.._.

1‘
e

2-3. Min-cut based Re-allocation

Minimize total dependency Core #0 Core #1
Cut = Dependency

Target: Minimize the dependency 1
= Minimum cut of graph

- .

Introducing LSI placement method

—
Exchange
Task 2 and Task 3

Tool GUI ~ Mincut

Scheduling Results J

Empowered by Innovation N E‘

fl

3-1. Software debugging environment by FPGA emulator

Conventional software development environments
1. Instruction set simulator

e Advantage: Rich observability and controllability
e Disadvantage: Slow and less accuracy
2. Real Chip
e Advantage: Fast and accurate
o Disadvantage: Less observability and controllability
Our proposed system

Multi-core System

icpu icpu
Modeling
icpu XCPU :>

C language based with various break point setting (clock/instruction),

rich observability and rich controllability

Remote
Debugging

‘H"l“lllu..._

Page 10 Empowered by Innovation NEC

il
fl

3-2. Clock Accurate FPGA Emulator Debugging System

| FPGA:
Processors models,
bus, IROM, RAM, break and
step control

| PC:
RAM view, ROM view,
program scroll, bus monitor,
and control terminal

| Debugging fabric:
Instruction step, clock step,
break point setting on
register, memory view and

C code j—

This system can handle clock
and instruction level break

Processor

Observe

201D

Processor

1

Break and Step Simtiltaneous
Clock Control Control

910d 40 IDd

2
|

B = Empowered by Innovation NE‘

3-3. Case Study: Environment for Multi-core System with Shared Memory

(OF fgisters |G Varisbles |

A 00002144
POREG 00000350
EX PG 00002133
IWE ADR O 00002140
IWE DATI 00000000
WE ACGK I 00030000
TWE WE O 00000000
DWE ADRE O FOO0231C
Dwe DATI 00000000
DWE DAT O FEDCGEAZE
DWE ACK I 00000000
DWE WE O 00030000
WE GAB O 00000000 €
BESTEBOQ 00000000
CYG O 000000 M

CPU#1 pl=id

s |G Variables T

{CPUDY main.c

#{int*) (D fO002308) =
*(int#) (0 fO00230c) =

00000000
00000000

#{int*) {xfO0023100 = EIXEI'I 234567
#(int#] (0 f0002314) = 0xB9abedef
#{int*) {DxfO00231 87 = DxTRG43210 ;
#(int#] (0 f00023) = Oxfedcbads ;

result = ord2_DMA _Exec(8, Dxf0002300, Dxf0002340, Proch

|

1
2 elze{
B

C Program Scroll =
#(int#] (0 f00023200 =

Tnput File 'r-—- T il 54
DEIGF A = disbindEorn Loz ettt koS EE *(lnt*)(ﬁxfﬂﬂﬂ2324)=6
| : _Autocapsule dizable Dro_F Il i b B *{in) Dxf0002325) = 7

7 *(inf*)(ﬂxfﬂﬂﬂ?ﬁ?r) =a" i

e CiomnBcton pietls
Gwee [T pEAT &
o
Debugls LF)
(=] 2]
- R Reszet Go
Update S|gn Select GRU [crn | |[(View Source

[000Z300 |/ 00000000 | 0000000 | 00000000 | 00000000

2| | Frec. Gnt @ O

|
= Step and clock control

Control View

q_hared memory view

3 ge 12

Empowered by Innovation E‘

Demo Videos

| Parallelization from Simulink Models
® Lane departure warning
® Compare with before parallelization and after parallelization

| Software debugging environment by FPGA emulator

® Dual core(2 OpenRISC Processor) model
- Each processor has local memory
- Shared memory

® C language interface
® Break points and step running
® DMA from memory for CPU1 to memory for CPU2

Empowered by Innovation N E‘

Conclusion

| Complicated software development for embedded multi-core
systems

® Proposed 3 method
1. Parallel C Code Generation from Simulink Models
2. Multi-Core Task Mapping for Hard Real-Time Systems
3. Software development environment by FPGA emulator

| Case Studies indicates the effectiveness of the proposed tools

® They help efficient development for software design for multi-core
systems

| Next target

® Analysis the performance and quality of software on multi-core
processor

Empowered by Innovation N E‘

