
A Software Development Toolset for
Multi-Core Processors

Yuichi Nakamura
System IP Core Research Labs.

NEC Corp.

Motivations

Embedded Systems: Performance
enhancement by multi-core
systems
Multi-core Systems need the
parallelization of software
How to develop parallelized
software on multi-core

Realistic parallelization
Keeping hard real time constraints
Detail verification and debug

Frequency increasing

of cores
increasing

#
 o

f
Co

re
s

CPU0 CPU1

Communication Consumer Car

Challenges:
Enhancement of the productivity of software development for multi-core
systems with high performance and high reliability.

Picochip
Tilera
ClearSpeed
Niagara
Power, etc.

Mobile

Our Approaches

Page 3

FPGA
Emulator

Dependency
Analysis

Task
Placement

Placement
Result

Core #1

Core #0

Original task set

Time

Hard Deadline

2.Task placement with constraints2.Task placement with constraints

CPU CPU CPU

3.Debugging SW by using FPGA3.Debugging SW by using FPGA

Modeling

Simulink

Sequen
ceal C

Co
de

 G
en

er
at

io
n

Simulink

1.Parallelization from models1.Parallelization from models

Task Parallelization
in short time

Support parallelization from
Simulink models

Model analysisModel analysis

Palallel code generationPalallel code generation

Optimization, grain controlOptimization, grain control

Flattening, loop unrollingFlattening, loop unrolling

C-code analysisC-code analysis

Task

Hard deadline

Core #0

Core #1

Comm

Multi-core real model

C
Programming
Environment

And
Debugger

Task Placement
with hard deadline

From an industry’s view, 3 approaches/tools are proposed

1-1.Parallel C Code Generation from Simulink Models

Simulink

Model
analysis
Model

analysis
Code

analysis
Code

analysis

Sequential
C code

Code generationCode generation

OptimizationOptimization

Simulink
models

Parallelized
C code

Pa
ra

lle
l c

od
e

ge
ne

ra
tio

n
to

ol

Building internal modelsBuilding internal models

A tool to generate parallel C code from Simulink models
The tool enables users to develop parallel software without
using parallel APIs explicitly.

task communication

Parallelization Method
1. treat each of leaf blocks in models as a task.
2. signal completion of processing of tasks to descendant
tasks with synchronized messages.

Simulink models To extract structural
parallelism expressed in
models through removing
block hierarchy and loop
structures.

To optimize task granularity
for small communication
overhead.

Preliminary experimental result
(audio equalizer, 100% before parallelization)

2-core PC 60%

4-core PC 38%

* Number of tasks in
parallelized software 57

1-2. How to Introduce Parallelization from Simulink Models

Sound effect process:
Modification of frequency and amplitude
1024sample/frame/channel

Task dependency graph
of tasks = 57

Sound effect
processing model
of blocks = 252

Pipeline parallelization

Ta
sk

Page 6

Lane departure warning Audio: Sound Effect

MATLAB :Video and Image processing toolbox :
vipldw_all.mdl

http://www.mathworks.com/matlabcentral/fileexchange/1
8317-professional-simulink-audio-equalizer

Model # of
blocks

of
tasks

Execution time compared with sequential
implementation
Windows
Xeon 4core @1.8GHz

eSOL eT-Kernel
NaviEngine (4core @400MHz)

Audio 252 57 38% 26%

Lane 302 63 35% 39%

1-3. Case Studies Parallelization from Simulink Model

2-1.Multi-Core Task Mapping for Hard Real-Time Systems

UseCase1: Easy migration of multi
task systems from single-core to
multi-core

STF generates task mapping
automatically that satisfies execution
order and real-time restrictions.

UseCase2: Integration of
discrete systems onto multi-core

Multi-Core Task Mapping Tool: STF (Smart Task Fitter)
Generates static mapping of embedded software on multi-core CPUs

Satisfying deadlines, execution order and other real-time restrictions
Can generate mapping of hundreds of tasks within few seconds

TimeDeadline

Core 0
Core 1

Core 1

Time

Dependency
Analysis

Task
Mapping

Result

Original Task Set

Core 0

Time
Deadline

Deadline

TimeDeadline

TimeDeadline

Core 0

Core 1
Time

Deadline

Integration example:
Three discrete real-time systems are integrated
onto a dual-core CPU by using automatically
mapping function of STF.
Each task keeps execution order and deadline.

Mapping Algorithm:
1) Task allocation with minimum

response time
2) Reallocation by min-cut based placement

2-2. Flow of Task Allocation with Minimum Response Time

E

A

D

Core #0

Core #1

E

CB

A DCore #0

Core #1

E

CB

A DCore #0

Core #1 CB

Time

Idol time

Time

Short period task

Time
Efficiency

Idol time is generated
by dependency

Response time
based allocation

Minimize total
response time

of all tasks

Idol time reduction

Each task can be
terminated in a short

time

F

F

F

2-3. Min-cut based Re-allocation

Exchange
Task 2 and Task 3

Minimize total dependency Core #0 Core #1
Cut = Dependency

Target: Minimize the dependency
= Minimum cut of graph

Introducing LSI placement method

Score
Task Table

Scheduling Results
MincutTool GUI

Page 10

3-1. Software debugging environment by FPGA emulator

CPU

CPU

CPU

Modeling

Multi-core System

CPU

Remote
Debugging

Conventional software development environments
1. Instruction set simulator

• Advantage: Rich observability and controllability
• Disadvantage: Slow and less accuracy

2. Real Chip
• Advantage: Fast and accurate
• Disadvantage: Less observability and controllability

Clock accurate
communication

Our proposed system

C language based with various break point setting (clock/instruction),
rich observability and rich controllability

TCP/IP

3-2. Clock Accurate FPGA Emulator Debugging System

FPGA:
Processors models,
bus, IROM, RAM, break and
step control
PC:
RAM view, ROM view,
program scroll, bus monitor,
and control terminal
Debugging fabric:
Instruction step, clock step,
break point setting on
register, memory view and
C code

Processor
IROM

RAM

Break and Step
Clock Control

Processor
IROM

RAM

Observe

Control

PCI or PCIe

This system can handle clock
and instruction level break
setting.

Simultaneous

Clock
>> 20MHz

Shared memory view
Control View

Update sign

Step and clock control

Page 12

3-3. Case Study: Environment for Multi-core System with Shared Memory

Current Status

Assembler Scroll

C Program Scroll

CPU#0 CPU#1

Registers view

C value view

Demo Videos

Parallelization from Simulink Models
Lane departure warning
Compare with before parallelization and after parallelization

Software debugging environment by FPGA emulator
Dual core(2 OpenRISC Processor) model

�• Each processor has local memory
�• Shared memory

C language interface
Break points and step running
DMA from memory for CPU1 to memory for CPU2

Conclusion

Complicated software development for embedded multi-core
systems

Proposed 3 method
1. Parallel C Code Generation from Simulink Models
2. Multi-Core Task Mapping for Hard Real-Time Systems
3. Software development environment by FPGA emulator

Case Studies indicates the effectiveness of the proposed tools
They help efficient development for software design for multi-core
systems

Next target
Analysis the performance and quality of software on multi-core
processor

