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Motivations

| Embedded Systems: Performance
enhancement by multi-core
systems

| Multi-core Systems need the
parallelization of software .
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Challenges:
Enhancement of the productivity of software development for multi-core
systems with high performance and high reliability.
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Our Approache
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From an industry’s view, 3 approaches/tools are proposed

I, Parallelization from modelsg2. liask placementiwithrconstraintsi S:Debugging SYW by using FRGA
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1-1.Parallel C Code Generation from Simulink Models

| A tool to generate parallel C code from Simulink models o
| The tool enables users to develop parallel software without Simulink

using parallel APIs explicitly. — ﬂ Sequential
imuliin : C code

models —_— -
L&

Parallelization Method:
1. treat each of leaf blocks in models as a task.

2. signal completion of processing of tasks to descendant
tasks with synchronized messages.

Code
analysis

task

communication

Building internal models

Simulink models |

Parallel code generation tool

To extract structural
parallelism expressed in / Optimization
Preliminary experimental result mOdels through remOVing
(audio equalizer, 100% before parallelization) bIOCk hiera rChy and |00p
ZRoEIRe 60% structures. :
4-core PC 38% Code generation
* Number of tasks in To optimize task granularity |/~ d
parallelized software: 57 for small communication  Parallelized
B overhead. ¢ Ccode
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1-2. How to Introduce Parallelization from Simulink Models

Sound effect process:

Modification of frequency and amplitude.
1024sample/frame/channel
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@Sdund effect
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1-3. Case Studies Parallelization from Simulink Model
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Windows eSOL eT-Kernel
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éé___E:T_PageG Empowered by Innovation NEC



2-1.Multi-Core Task Mapping for Hard Real-Time Systems

Multi-Core Task Mapping Tool: STF (Smart Task Fitter)
v Generates static mapping of embedded software on multi-core CPUs

v Can generate mapping of hundreds of tasks within few seconds

» Satisfying deadlines, execution order and other real-time restrictions

| UseCase1: Easy migration of multi
task systems from single-core to
multi-core
e STF generates task mapping I — - 'I

| UseCase2: Integration of

discrete systems onto multi-core

. . . Deadlirte Ti
automatically that satisfies execution eadiif Time Core 0 .
order and real-time restrictions. e E———
Deadlin Time Core 1 =
I 1 . _
Deadline _Deadiife  Time Deadline
Original Task Set ” DIETBEEIEEY | Integration example:
Analysis . . .
Three discrete real-time systems are integrated

mapping function of STF.

Mapping Algorithm:
1) Task allocation with minimum
response time

Core 1 1= [

onto a dual-core CPU by using automatically

Each task keeps execution order and deadline.

beaaine Twel 2) Reallocation by min-cut based placement
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2-2. Flow of Task Allocation with Minimum Response Time

Idol time is generated
by dependency

:

Response time
based allocation

@

Idol time reduction

@

Minimize total
response time
of-all tasks

@

Each task can be
terminated in a short
time
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2-3. Min-cut based Re-allocation

Minimize total dependency Core #0 Core #1
Cut = Dependency

Target: Minimize the dependency 1
= Minimum cut of graph

- .

Introducing LSI placement method

—
Exchange
Task 2 and Task 3

Tool GUI ~ Mincut

Scheduling Results J
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3-1. Software debugging environment by FPGA emulator

Conventional software development environments
1. Instruction set simulator

e Advantage: Rich observability and controllability
e Disadvantage: Slow and less accuracy
2. Real Chip
e Advantage: Fast and accurate
o Disadvantage: Less observability and controllability
Our proposed system

Multi-core System

icpu icpu
Modeling
icpu XCPU :>

C language based with various break point setting (clock/instruction),

rich observability and rich controllability

Remote
Debugging
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3-2. Clock Accurate FPGA Emulator Debugging System

| FPGA:
Processors models,
bus, IROM, RAM, break and
step control

| PC:
RAM view, ROM view,
program scroll, bus monitor,
and control terminal

| Debugging fabric:
Instruction step, clock step,
break point setting on
register, memory view and

C code j—

This system can handle clock
and instruction level break

Processor

Observe

201D

Processor

1

Break and Step Simtiltaneous
Clock Control Control
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3-3. Case Study: Environment for Multi-core System with Shared Memory

(OF fgisters |G Varisbles |
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Demo Videos

| Parallelization from Simulink Models
® Lane departure warning
® Compare with before parallelization and after parallelization

| Software debugging environment by FPGA emulator

® Dual core(2 OpenRISC Processor) model
- Each processor has local memory
- Shared memory

® C language interface
® Break points and step running
® DMA from memory for CPU1 to memory for CPU2
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Conclusion

| Complicated software development for embedded multi-core
systems

® Proposed 3 method
1. Parallel C Code Generation from Simulink Models
2. Multi-Core Task Mapping for Hard Real-Time Systems
3. Software development environment by FPGA emulator

| Case Studies indicates the effectiveness of the proposed tools

® They help efficient development for software design for multi-core
systems

| Next target

® Analysis the performance and quality of software on multi-core
processor
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