
MPsoC 2011

Programming for performance in FPGAs using
multiple processors and accelerators with
C/C++ programming
Kees Vissers kees.vissers@xilinx.com
Xilinx
MPSoC 2011

MPSoC 2011 © Copyright 2010 Xilinx

October 2009
Page 2

Contents

Processors and Pipelines
C to RTL works
Next step: ARM processors + FPGA
Medical Application
Conclusion

MPSoC 2011 © Copyright 2010 Xilinx

October 2009

Key Industry Drivers for Change

The Programmable Imperative

Insatiable Bandwidth

Ubiquitous Connected Computing
Broadening
Markets

MPSoC 2011 © Copyright 2010 Xilinx

October 2009

Fewer Companies Can Do it All

Source: IBS March 2010

Investments
from a few
must be
leveraged
by many

MPSoC 2011 © Copyright 2010 Xilinx

October 2009
Page 5

MPSoC 2011 © Copyright 2010 Xilinx

October 2009
Page 6

Processors and Pipelines

1000:1 100:1 10:1 1:1clock:sample

200Ks/s 2Ms/s 20Ms/s 200Ms/sData Rate
(200MHz clock)

RISC
Proc.

Proc. w/
accels.

Folded
datapath

Pipelined
datapathDesign

approach

Applications control audio mobile video HDTV comms networking

C to RTL tools

1:10

2 Gs/s

Replicated
datapath

FPGAs
Processors

MPSoC 2011 © Copyright 2010 Xilinx

October 2009

Code Restructuring
Macro-architecture
description
Parameterization
FPGA Optimizations

Directives (pragmas)
Specify performance
Mapping resources

High-Level Synthesis Tools for FPGA

Page 7

Implementation C/C++

High-Level
Synthesis
Tool

RTL System Design

Directives

Reference C/C++

Code Restructuring

C
/C

++
, M

at
la

b
Ve

rif
ic

at
io

n

C/C++ level verification
Use traditional tools
(C/C++ compiler, Matlab)
Re-use C/C++ testbench

MPSoC 2011 © Copyright 2010 Xilinx

October 2009
Page 8

C to FPGA tools summary

Programming with C to FPA tools for performance is
comparable to programming for performance on a
DSP

FPGAs deliver 30x the cost performance benefit
compared to this DSP, programmed in C/C++

The results of good RTL design are comparable to
what these C to FPGA tools can achieve

Xilinx acquired AutoESL in January 2011

MPSoC 2011 © Copyright 2010 Xilinx

October 2009
Page 9

Mimo Sphere decoder application

Results compared with good standard
design: tool is mostly better
Performance of this problem in the range
of 150 Gops (mostly 16 bit)
All C++ code with AutoESL directives
Synthesized at 225MHz

Metric SysGen AutoESL Expert Result % Diff
Development Time 16.5 5 -9%

LUTs 27,870 29,060 +4%

Registers 42,035 31, 000 -26%

DSP48 slices 237 201 -15%

18K Brams 138 99 -28%

MPSoC 2011 © Copyright 2010 Xilinx

October 2009

Time to result

MPSoC 2011 © Copyright 2010 Xilinx

October 2009

Zynq Architecture

Page 11

MPSoC 2011 © Copyright 2010 Xilinx

October 2009

view: Partition and Integrate

Develop Algorithm

Perform HW / SW
System Partitioning

Develop Executable
Hardware Specification

Develop
Synthesizable Model

Generate Accelerator
Block Using HLS

Integrate into
Embedded System

Debug and Release

C/C++

C/C++

C/C++

C/C++

C/C++

Embedded
CPU Accelerator

AXI
Embedded

CPU

Matrix Multiply Program;;

void main() {

for(i=0;; i<DIM;; i++) {
for(j=0;; j<DIM;; j++) {

a_re[i][j] = (i+1);;
b_re[i][j] = (j+1);;
out_re1[i][j] = 0.0f;;

}
}

matrix_multiply_accelerator(a_re, b_re, out_re);;

}

MPSoC 2011 © Copyright 2010 Xilinx

October 2009

The programmers view: partition the code

Embedded
CPU Accelerator

AXI
Embedded

CPU

Matrix Multiply Program;;

void main() {

for(i=0;; i<DIM;; i++) {
for(j=0;; j<DIM;; j++) {

a_re[i][j] = (i+1);;
b_re[i][j] = (j+1);;
out_re1[i][j] = 0.0f;;

}
}

matrix_multiply_accelerator(a_re, b_re, out_re);;

}

MPSoC 2011 © Copyright 2010 Xilinx

October 2009

Data movement matters

Embedded
CPU Accelerator

AXI
Embedded

CPU

Matrix Multiply Program;;

void main() {

init_hw_accelerator();;

for(i=0;; i<DIM;; i++) {
for(j=0;; j<DIM;; j++) {

a_re[i][j] = (i+1);;
b_re[i][j] = (j+1);;
out_re1[i][j] = 0.0f;;

}
}

matrix_multiply_accelerator(a_re, b_re, out_re);;

}

Move 2 matrices

Move 1 matrix

Software programmer
Abstracts from data movement

Conceptually,
all variables are free
And can be used everywhere

Performance programmer
Needs Abstraction
from the details:

Feedback on total data
Impact on total time

Many ways to move data:
memcopy
DMA, central, distributed
with ACP, with on chip memory
flush cache and external mem.

MPSoC 2011 © Copyright 2010 Xilinx

October 2009

Some interesting challenges

Simple example: 32 x 32 matrix multiply floating point
calculation.
A 32 x 32 x 4 byte matrix = 4Kbyte, is this page aligned?
Do we run an OS on the processor(s)? Linux? SMP?
Do we have the ACP port in cache coherency mode?
Do we use DMA, what burst length? Buffer sizing?
Is it faster using the On chip memory?
Are the accelerators using the same floating point math, same
order of compute?
Translation of User address space to physical address space?
Can I stream multiple matrix multiplies back to back?

Page 15

MPSoC 2011 © Copyright 2010 Xilinx

October 2009

Abstractions for the software programmer

Abstract the core generated by C to FPGA tools
Provide main memory interface abstraction
Provide DMA abstraction, buffer size abstraction, driver abstraction
Software Programmers view for the total system

Page 16

AXI4

AXI4
Embedded

CPU

memory
Interface

DMA

AXI4

ap_clk

accelerator_core

dout
write

full_n

ap_rst

din
empty
read

ap_done
ap_idle

ap_startControl
FSM

Data

Control

Buffer

Xilinx Confidential Copyright 2010 Xilinx

Back Projection problem

The backprojection algorithm is used in a
variety of tomography applications,
including CAT scanners.
Takes raw data from a scan at different
angles and reconstructs an image based
on that data.
This design recreates a 256x256 pixel
image from a 256x367 dataset (256 angles,
each of which is 256*sqrt(2) = 367
elements)
Floating point application.
Runs on Arm processors with Neon
Significant acceleration with 2 dedicated
accelerators

Xilinx Confidential Copyright 2010 Xilinx

The output and our FPGA based prototype

MPSoC 2011 © Copyright 2010 Xilinx

October 2009
Page 19

Zynq Products in context

1000:1 100:1 10:1 1:1clock:sample

200Ks/s 2Ms/s 20Ms/s 200Ms/sData Rate
(200MHz clock)

RISC
Proc.

Proc. w/
accels.

Folded
datapath

Pipelined
datapathDesign

approach

Applications control audio mobile video HDTV comms networking

1:10

2 Gs/s

Replicated
datapath

Modern Arm processors
Several Gops

Fabric
10 500 Gops

MPSoC 2011 © Copyright 2010 Xilinx

October 2009

Concluding Remarks

C to FPGA tools work well in the signal processing domain
and for floating point calculations.

-1000 risc
operations every clock cycle.
Communication latency and bandwidth between the
processors and accelerators is important.
Overlap transfer and compute: DMA, multi-thread.
Next generation Processors + FPGA fabric become
affordable.
Rapid cost reduction: 28nm, 22nm and further.
Pre- fabricated Heterogeneous programmable platforms
offer power efficient flexibility.
We do the hard platform construction, so that you can use it.

Page 20

MPSoC 2011 © Copyright 2010 Xilinx

October 2009

References

Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers,
Zhiru Zhang: High-Level Synthesis for FPGAs: From Prototyping to
Deployment, IEEE Transactions On Computer-aided Design Of Integrated
Circuits And Systems, Vol. 30, No. 4, April 2011, pages 473 491.
Juanjo Noguera, Stephen Neuendorffer , Sven Van Haastregt, Jesus Barba,
Kees Vissers, Chris Dick: Sphere Detector For 802.16e Broadband Wireless
Systems Implementation On FPGAs Using High-level Synthesis Tools,
Software Defined Radio Forum, December 2010
Kees Vissers, Stephen Neuendorffer, and Juanjo Noguera: Building real-time
HDTV applications in FPGAs using processors, AXI interfaces and high
level synthesis tools. Design Automation and Test Europe Conference
(DATE). 2011.
www.xilinx.com/products/silicon-devices/epp/zynq

www.bdti.com/resources/benchmarkresults/hlstcp/autopilot

Page 21

