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Key Industry Drivers for Change

The Programmable Imperative

Insatiable Bandwidth

Ubiquitous Connected Computing
Broadening 
Markets



MPSoC 2011 © Copyright 2010 Xilinx

October    2009

Fewer Companies Can Do it All 

Source:  IBS March 2010

Investments
from a few
must be 
leveraged 
by many
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Processors and Pipelines
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Code Restructuring
Macro-architecture 
description
Parameterization
FPGA Optimizations

Directives (pragmas)
Specify performance
Mapping resources

High-Level Synthesis Tools for FPGA
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Implementation C/C++

High-Level 
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C/C++ level verification
Use traditional tools 
(C/C++ compiler, Matlab)
Re-use C/C++ testbench
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C to FPGA tools summary

Programming with C to FPA tools for performance is 
comparable to programming for performance on a 
DSP

FPGAs deliver 30x the cost performance benefit 
compared to this DSP, programmed in C/C++

The results of good RTL design are comparable to 
what these C to FPGA tools can achieve

Xilinx acquired AutoESL in January 2011
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Mimo Sphere decoder application

Results compared with good standard 
design: tool is mostly better
Performance of this problem in the range 
of 150 Gops (mostly 16 bit)
All C++ code with AutoESL directives
Synthesized at 225MHz

Metric SysGen AutoESL Expert Result % Diff
Development Time 16.5 5 -9%

LUTs 27,870 29,060 +4%

Registers 42,035 31, 000 -26%

DSP48 slices 237 201 -15%

18K Brams 138 99 -28%
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Time to result
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Zynq Architecture
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view: Partition and Integrate

Develop  Algorithm

Perform  HW  /  SW
System Partitioning

Develop  Executable
Hardware  Specification

Develop  
Synthesizable  Model

Generate  Accelerator  
Block  Using  HLS

Integrate  into
Embedded System

Debug  and  Release

C/C++

C/C++

C/C++

C/C++

C/C++

Embedded
CPU Accelerator

AXI
Embedded

CPU

Matrix  Multiply  Program;;

void  main()  {    

for(i=0;;  i<DIM;;  i++)  {
for(j=0;;  j<DIM;;  j++)  {

a_re[i][j]  =  (i+1);;
b_re[i][j]  =  (j+1);;
out_re1[i][j]  =  0.0f;;

}
}    

matrix_multiply_accelerator(a_re,  b_re,  out_re);;

}



MPSoC 2011 © Copyright 2010 Xilinx

October    2009

The programmers view: partition the code

Embedded
CPU Accelerator

AXI
Embedded

CPU

Matrix  Multiply  Program;;

void  main()  {    

for(i=0;;  i<DIM;;  i++)  {
for(j=0;;  j<DIM;;  j++)  {

a_re[i][j]  =  (i+1);;
b_re[i][j]  =  (j+1);;
out_re1[i][j]  =  0.0f;;

}
}    

matrix_multiply_accelerator(a_re,  b_re,  out_re);;

}



MPSoC 2011 © Copyright 2010 Xilinx

October    2009

Data movement matters

Embedded
CPU Accelerator

AXI
Embedded

CPU

Matrix  Multiply  Program;;

void  main()  {    

init_hw_accelerator();;  

for(i=0;;  i<DIM;;  i++)  {
for(j=0;;  j<DIM;;  j++)  {

a_re[i][j]  =  (i+1);;
b_re[i][j]  =  (j+1);;
out_re1[i][j]  =  0.0f;;

}
}    

matrix_multiply_accelerator(a_re,  b_re,  out_re);;

}

Move  2  matrices

Move  1  matrix

Software programmer
Abstracts from data movement

Conceptually, 
all variables are free
And can be used everywhere

Performance programmer
Needs Abstraction
from the details:

Feedback on total data
Impact on total time

Many ways to move data:
memcopy
DMA, central, distributed
with ACP, with on chip memory
flush cache and external mem.
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Some interesting challenges

Simple example: 32 x 32 matrix multiply  floating point 
calculation.
A 32 x 32 x 4 byte matrix = 4Kbyte, is this page aligned?
Do we run an OS on the processor(s)? Linux? SMP?
Do we have the ACP port in cache coherency mode?
Do we use DMA, what burst length? Buffer sizing?
Is it faster using the On chip memory?
Are the accelerators using the same floating point math, same 
order of compute?
Translation of User address space to physical address space?
Can I stream multiple matrix multiplies back to back?
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Abstractions for the software programmer

Abstract the core generated by C to FPGA tools
Provide  main memory interface abstraction
Provide DMA abstraction, buffer size abstraction, driver abstraction
Software Programmers view for the total system
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AXI4
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Interface
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ap_clk
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dout
write
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din
empty
read

ap_done
ap_idle

ap_startControl
FSM

Data

Control

Buffer
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Back Projection problem

The backprojection algorithm is used in a 
variety of tomography applications, 
including CAT scanners.
Takes raw data from a scan at different 
angles and reconstructs an image based 
on that data.
This design recreates a 256x256 pixel 
image from a 256x367 dataset (256 angles, 
each of which is 256*sqrt(2) = 367 
elements)
Floating point application.
Runs on Arm processors with Neon
Significant acceleration with 2  dedicated 
accelerators
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The output and our FPGA based prototype
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Zynq Products in context
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Several  Gops

Fabric
10   500  Gops
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Concluding Remarks

C to FPGA tools work well in the signal processing domain 
and for floating point calculations.

-1000 risc
operations every clock cycle.
Communication latency and bandwidth between the 
processors and accelerators is important.
Overlap transfer and compute: DMA, multi-thread.
Next generation Processors + FPGA fabric become 
affordable.
Rapid cost reduction: 28nm, 22nm and further.
Pre- fabricated Heterogeneous  programmable platforms  
offer power efficient flexibility.
We do the hard platform construction, so that you can use it.
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