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• Why optical computing is reignited?

• How to do optical computing in photonics?

• Our works: optical streaming processors 
implementing novel models in photonics

Outline
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(1) Power issue and demands for computational power 
• Computational power doubles per 10 months
• Energy consumption is already substantial, and is increasing rapidly
• End of Moore’s law stagnation of digital processor performance
• End of Dennard law  energy efficiency gains slows

(2) Advances in optical interconnects and photonics-electronics co-integration
(3) Physical system computes better in energy efficiency

Why optical computing is reignited?

On-Package 

https://nvidianews.nvidia.com/news/nvid
ia-spectrum-x-co-packaged-optics-
networking-switches-ai-factories 

https://www.nature.com/ar
ticles/s41566-025-01633-0 

On-Chip 

Intrigue constructing optical physical analog AI system

Physical concepts + machine learning

https://www.nobelprize.org/

“They used physics to find patterns in information”
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Optical computing: Hype or hope? 

Cons:
Scalability 
Programmability 
Nonlinearity 
Trainability 
Stability
Low resolution
Area efficiency

Why it failed?Pros and consEnergy saved or not?

Comments:
• System evaluation is of necessity
• Concerns of heavy overhead related to digital processors and memory
• It is time to re-evaluate the possibilities of optical computing

What we are 
expecting

• One-shot
• All-optical
• High-throughput
• Applicable scale
• System-level 

energy efficiency
• Less digital 

intervene

Pros:
Low energy
Low latency
High clock speed
High bandwidth
High parallelism
Network compatibility

Example: Optical Fourier transformation

Three elements required
• On-demand use input
• Reconfigurable
• Result interpretation
Overhead consumes 
additional powers

I’d to call it lens instead 
of computing since

Lost to VLSI due to
• Scalability
• Low integration
• Programmability 
• Not easy to use
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How to do computing in photonics?: scalar operations 

• Addition
• Electrical field addition (coherent)
• Optical power addition (incoherent) 
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• Scalar multiplication
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Incoherent dot productCoherent dot product
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Multiplexing for linear operations 

𝑥 𝑥ᇱ

Incoherent MVM

Coherent MVM

Massive parallelism by sharing 
hardware, offering scalable and 
energy efficient linear operations.
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How nonlinear functions can be achieved in photonics?

Towards traditional 
activation functions

• We are focusing on wide nonlinearities to construct 
new models instead of replacing traditional ones

• Despite of same technology, new possibility and 
effects are achievable

• Offering new merits in solving some remaining 
challenges 

Support vector machine  (SVM)-
like nonlinear projection

Bilinear projection

Vertically hierarchical PNN

EO Hopfield network

Scalability
Small-sample learning

Nonlinearity

Towards challenges of :

MZ

x

MZ

x

sin(x)
sin2(x)

Data-encoding enabled nonlinearity

7

All-optical

OEO

• Saturation absorber
• TPA
• SOA
• (3)…

OPD  TIA/ADC  E

Digital circuits

EDAC/Driver Laser/modulator O

Analog circuits
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Linear transformation
Linear + EO-hybrid 
nonlinearity

Linear + All-optical 
nonlinearity

NonlinearitySVM (support vector machine)-like 
nonlinear projection-based PNN

Nature Communications 13, 3261 (2022) 

APL Photonics 9, 056110 (2024)
OFC 2023, W3G.2.(Invited talk)

Vertically 
hierarchical 
PNN

EO-Hopfield network

Gate modulated PNN

Scalability

2022 2023 2024 2025

Our works: optical streaming processors implementing novel models

Spatiotemporal encoding
Physical intelligence

Bilinear

Data-encoding 
nonlinearity Multiple operators

Loss-robust 
architecture

Our approach
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• Leveraging phase-amplitude (EO) nonlinearity of MZI
• Linear separation by VMM afterwards
• Maximum-power port position indicates the result
• Only passive circuits

Nonlinear projection + linear separation

• For multilayer perceptron (MLP), it is using y = wf(…(wf(wx + 
b) + b)) to approximate a nonlinear function.

• We are thinking reversely: constructing nonlinear projection 
function firstly, that may enable easy separation.

(1) Nonlinear projection-based PNN
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Encoding the data into MZI network
XOR Iris Nonlinear datasets

• Encoding the data into MZI networks
• Leveraging EO nonlinearity associated with data encoding

Bilinear projection

10

Input replication improved nonlinear expressivity
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Device and module

PNN module
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Nature Communications 13, 3261 (2022) 

https://pytorch.org/
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Classification experiment: Boolean logic

• Port 1  0
• Port 5  1
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Classification experiment: Iris dataset

0
1
2
3
4
5
6
7

6040200

0.8
0.6
0.4
0.2
0.0

0
1
2
3
4
5
6
7

806040200

Po
rt

train 94.44% test 96.67%

Samples Samples

Setosa

Versicolor

Virginica

Setosa

Versicolor

Virginica

Optical power mapping after training

Optical power before traininghttps://archive.ics.uci.edu/ml/datasets/iris

• Data normalization
• Port assignments

• Port 1  Setosa
• Port 3  Versicolor
• Port 5 Virginica

• 410153
• ReLU
• 235 weights
• ~97%

https://python.atelierkobato.com/variety/

DOI: 10.1109/IDAP.2018.8620866

86-90%

Two examples of digital NN

Po
rt

Samples
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Long time stability

Details of experimental results
Power: ~360 mW

Voltage distribution among 46 heaters

 Electronics for IO only
 Computing is done just by optical propagation
 Latency < 100 ps

Demo videoXOR video using BFO algorithm
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(2) Bilinear projection in gate modulated PNN

These variants have shown 
improvements over traditional 
activation functions when used 
in Transformer models.

arXiv:2002.05202v1,12 Feb 2020

U

𝑧ଵ = 𝑊𝑥, 𝑧ଶ = 𝑉𝑥

𝐵 = 𝑧ଵ⨂𝑧ଶ

𝐵௜ =෍𝑊௜௝𝑥௝ ⋅ 𝑉௜௞𝑥௞

𝑣௜ =෍𝑊௜௝𝑥௝ ⋅ 𝑥௞

𝑣௜ = ෍𝑊௜௝𝑥௝ ⋅ 𝑠𝑖𝑛 𝑥௞

Variants

U

M
Z

M
Z

x Gate

Bilinear
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https://www.jst.go.jp/kisoken/crest/

JST CREST (JPMJCR21C3)

AIST SCR PlatformJSPS KAKENHI JP23H01885

https://www.jst.go.jp/kisoken/crest/

JST CREST (JPMJCR24R3) (2024 newly launched)JST CREST (JPMJCR24R3) (2024 newly launched)
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